Modified Bounded Homotopies in the Solving of Phase Stability Problems for Liquid–Liquid Phase-Splitting Calculations

In this study, the modified bounded homotopies presented by Malinen and Tanskanen (Malinen, I.; Tanskanen, J. Modified bounded homotopies to enable a narrow bounding zone. Chem. Eng. Sci.2008, 63, 3419) are investigated in order to solve phase stability analysis problems in liquid–liquid equilibrium cases for phase-splitting calculations. The tangent-plane distance criterion is used to analyze the phase stability. The emphasis is on approaching the first root on the homotopy path. According to the observations, the bounding of the homotopy path with respect to the problem variables aids in the solving of a phase stability analysis problem. The main shortcomings of the modified bounded Newton, affine, and fixed-point homotopies are the starting point isolas, the existence of unfeasible solutions, and the convergence to only certain roots, respectively. The attraction domain of the global minimum was observed to be the largest with the fixed-point homotopy. Sequential usage of the fixed-point homotopy and s...

[1]  C. Floudas,et al.  A global optimization algorithm (GOP) for certain classes of nonconvex NLPs—I. Theory , 1990 .

[2]  M. Stadtherr,et al.  Reliable Phase Stability Analysis for Excess Gibbs Energy Models , 2000 .

[3]  M. Kubicek,et al.  Computing heterogeneous azeotropes in multicomponent mixtures , 1997 .

[4]  S. Gómez,et al.  Efficient location of multiple global minima for the phase stability problem , 2009 .

[5]  Wolfgang Marquardt,et al.  Quick and reliable phase stability test in VLLE flash calculations by homotopy continuation , 2000 .

[6]  Y. Demirel,et al.  Phase stability analysis using interval Newton method with NRTL model , 2005 .

[7]  Steven A. Johnson,et al.  Mapped continuation methods for computing all solutions to general systems of nonlinear equations , 1990 .

[8]  Xu Zhihong,et al.  Calculation of liquid-liquid equilibrium based on the global stability analysis for ternary mixtures by using a novel branch and bound algorithm : Application to UNIQUAC equation , 1999 .

[9]  W. Seider,et al.  Homotopy-continuation method for stability analysis in the global minimization of the Gibbs free energy , 1995 .

[10]  Manfred Morari,et al.  Multiple steady states in distillation: Effect of VL(L)E inaccuracies , 2000 .

[11]  R. P. Stateva,et al.  The Area Method for Phase Stability Analysis Revisited: Further Developments. Formulation in Terms of the Convex Envelope of Thermodynamic Surfaces , 2007 .

[12]  C. Floudas,et al.  GLOPEQ: A new computational tool for the phase and chemical equilibrium problem , 1997 .

[13]  P. I. Barton,et al.  Computation of heteroazeotropes. Part I: Theory , 2000 .

[14]  F. Walraven,et al.  An improved phase splitting algorithm , 1988 .

[15]  K. Gasem,et al.  Multiphase Equilibrium Calculations Using Gibbs Minimization Techniques , 2003 .

[16]  R. P. Stateva,et al.  NUMERICAL SOLUTION OF THE ISOTHERMAL, ISOBARIC PHASE EQUILIBRIUM PROBLEM , 2004 .

[17]  A. S. Cullick,et al.  New strategy for phase equilibrium and critical point calculations by thermodynamic energy analysis. Part I. Stability analysis and flash , 1991 .

[18]  Alexander H. G. Rinnooy Kan,et al.  A stochastic method for global optimization , 1982, Math. Program..

[19]  T. L. Wayburn,et al.  Homotopy continuation methods for computer-aided process design☆ , 1987 .

[20]  Global Stability Analysis and Calculation of Liquid−Liquid Equilibrium in Multicomponent Mixtures† , 1996 .

[21]  Christodoulos A. Floudas,et al.  Global optimization for the phase stability problem , 1995 .

[22]  Yushan Zhu,et al.  A reliable prediction of the global phase stability for liquid-liquid equilibrium through the simulated annealing algorithm: Application to NRTL and UNIQUAC equations , 1999 .

[23]  J. Seader,et al.  Homotopy continuation method in multi-phase multi-reaction equilibrium systems , 1999 .

[24]  Christodoulos A. Floudas,et al.  Global Optimization and Analysis for the Gibbs Free Energy Function Using the UNIFAC, Wilson, and ASOG Equations , 1995 .

[25]  M. Michelsen The isothermal flash problem. Part I. Stability , 1982 .

[26]  Yushan Zhu,et al.  Global stability analysis and phase equilibrium calculations at high pressures using the enhanced simulated annealing algorithm , 2000 .

[27]  Michael F. Malone,et al.  Computing all homogeneous and heterogeneous azeotropes in multicomponent mixtures , 1999 .

[28]  M. Stadtherr,et al.  Enhanced Interval Analysis for Phase Stability: Cubic Equation of State Models , 1998 .

[29]  T. Csendes,et al.  Application of a stochastic method to the solution of the phase stability problem: cubic equations of state , 2003 .

[30]  Computation of phase equilibrium: Optimization with thermodynamic inconsistency , 1985 .

[31]  J. Seader,et al.  Use of homotopy-continuation method in stability analysis of multiphase, reacting systems , 2000 .

[32]  Saeed Khaleghi Rahimian,et al.  Global solution approaches in equilibrium and stability analysis using homotopy continuation in the complex domain , 2008, Comput. Chem. Eng..

[33]  Min Wang,et al.  Homotopy continuation method for calculating critical loci of binary mixtures , 1999 .

[34]  Neima Brauner,et al.  Numerical solution of non-linear algebraic equations with discontinuities , 2002 .

[35]  Juha Tanskanen,et al.  Modified bounded homotopies to enable a narrow bounding zone , 2008 .

[36]  E. Allgower,et al.  Simplicial and Continuation Methods for Approximating Fixed Points and Solutions to Systems of Equations , 1980 .

[37]  G. P. Rangaiah Evaluation of genetic algorithms and simulated annealing for phase equilibrium and stability problems , 2001 .

[38]  S. Gómez,et al.  Multiphase equilibria calculation by direct minimization of Gibbs free energy with a global optimization method , 2002 .

[39]  N. Aslam,et al.  Reliable computation of binary homogeneous azeotropes of multi-component mixtures at higher pressures through equation of states , 2004 .

[40]  C. Floudas,et al.  Global optimization for the phase and chemical equilibrium problem: Application to the NRTL equation , 1995 .

[41]  Mark A. Stadtherr,et al.  Reliable phase stability analysis for asymmetric models , 2005 .

[42]  L. C. Kobylka,et al.  Pressure Sensitivity Analysis of Azeotropes , 2003 .

[43]  N. Saber,et al.  Rapid and robust phase behaviour stability analysis using global optimization , 2008 .

[44]  G. Cholakov,et al.  A powerful algorithm for liquid–liquid–liquid equilibria predictions and calculations , 2000 .

[45]  Wallace B. Whiting,et al.  Area method for prediction of fluid-phase equilibria , 1992 .

[46]  L. E. Baker,et al.  Gibbs energy analysis of phase equilibria , 1982 .

[47]  Mark A. Stadtherr,et al.  Reliable prediction of phase stability using an interval Newton method , 1996 .

[48]  Kai Sundmacher,et al.  Equilibrium and rate-based approaches to liquid-liquid phase splitting calculations , 2005, Comput. Chem. Eng..

[49]  N. Aslam,et al.  Sensitivity of azeotropic states to activity coefficient model parameters and system variables , 2006 .

[50]  Gade Pandu Rangaiah,et al.  A study of differential evolution and tabu search for benchmark, phase equilibrium and phase stability problems , 2007, Comput. Chem. Eng..

[51]  P. I. Barton,et al.  Bilevel optimization formulation for parameter estimation in vapor–liquid(–liquid) phase equilibrium problems , 2009 .

[52]  Juha Tanskanen,et al.  Homotopy parameter bounding in increasing the robustness of homotopy continuation methods in multiplicity studies , 2010, Comput. Chem. Eng..

[53]  P. I. Barton,et al.  Computation of heteroazeotropes. Part II: efficient calculation of changes in phase equilibrium structure , 2000 .

[54]  M. F. Malone,et al.  Computing azeotropes in multicomponent mixtures , 1993 .

[55]  P. I. Barton,et al.  A dual extremum principle in thermodynamics , 2007 .

[56]  Juha Tanskanen,et al.  A rigorous minimum energy calculation method for a fully thermally coupled distillation system , 2007 .

[57]  A. Bonilla-Petriciolet,et al.  Performance of Stochastic Global Optimization Methods in the Calculation of Phase Stability Analyses for Nonreactive and Reactive Mixtures , 2006 .

[58]  Jorge R. Paloschi,et al.  Bounded homotopies to solve systems of sparse algebraic nonlinear equations , 1997 .

[59]  Peter A. DiMaggio,et al.  The phase behavior of n-alkane systems , 2005, Comput. Chem. Eng..

[60]  F. Jalali,et al.  MULTIPLE SOLUTIONS IN STABILITY ANALYSIS USING HOMOTOPY CONTINUATION IN COMPLEX SPACE , 2007 .