First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Interpretation of the TT and TE Angular Power Spectrum Peaks

The CMB has distinct peaks in both its temperature angular power spectrum (TT) and temperature-polarization cross-power spectrum (TE). From the WMAP data we find the first peak in the temperature spectrum at l=220.1+/-0.8 with an amplitude of 74.7+/-0.5 muK; the first trough at l=411.7+/-3.5 with an amplitude of 41.0+/-0.5 muK; and the second peak at l+546+/-10 with an amplitude of 48.8+/-0.9 muK. The TE spectrum has an antipeak at l=137+/-9 with a cross-power of -35+/-9 muK(2), and a peak at l=329+/-19 with cross-power 105+/-18 muK(2). All uncertainties are 1 sigma and include calibration and beam errors. An intuition for how the data determine the cosmological parameters may be gained by limiting one's attention to a subset of parameters and their effects on the peak characteristics. We interpret the peaks in the context of a. at adiabatic LambdaCDM model with the goal of showing how the cosmic baryon density, Omega(b)h(2), matter density, Omega(m)h(2), scalar index, n(s), and age of the universe are encoded in their positions and amplitudes. To this end, we introduce a new scaling relation for the TE antipeak-to-peak amplitude ratio and recompute known related scaling relations for the TT spectrum in light of the WMAP data. From the scaling relations, we show that WMAP's tight bound on Omega(b)h(2) is intimately linked to its robust detection of the first and second peaks of the TT spectrum.

[1]  William H. Press,et al.  The Cosmological constant , 1992 .

[2]  P. Steinhardt,et al.  Cosmology - The cosmic triangle: Revealing the state of the universe , 1999, astro-ph/9906463.

[3]  Edward J. Wollack,et al.  The Optical Design and Characterization of the Microwave Anisotropy Probe , 2003, astro-ph/0301160.

[4]  R. Ellis,et al.  Parameter constraints for flat cosmologies from cosmic microwave background and 2dFGRS power spectra , 2002, astro-ph/0206256.

[5]  M. Halpern,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications For Inflation , 2003 .

[6]  N. Christensen,et al.  Bayesian methods for cosmological parameter estimation from cosmic microwave background measurements , 2000, astro-ph/0103134.

[7]  Page,et al.  Characterizing the peak in the cosmic microwave background angular power spectrum , 2000, Physical review letters.

[8]  Edward J. Wollack,et al.  First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters , 2003, astro-ph/0302209.

[9]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results , 2003, astro-ph/0302207.

[10]  Adrian T. Lee,et al.  Measurement of a Peak in the Cosmic Microwave Background Power Spectrum from the North American Test Flight of Boomerang , 1999, The Astrophysical journal.

[11]  J. P. Huchra,et al.  Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant , 1998, astro-ph/9801080.

[12]  R. Sachs,et al.  Perturbations of a Cosmological Model and Angular Variations of the Microwave Background , 1967 .

[13]  M. Ferreira Have acoustic oscillations been detected in the current cosmic microwave background data , 2001, astro-ph/0111400.

[14]  William H. Press,et al.  Numerical Recipes in C, 2nd Edition , 1992 .

[15]  Adrian T. Lee,et al.  A High Spatial Resolution Analysis of the MAXIMA-1 Cosmic Microwave Background Anisotropy Data , 2001, astro-ph/0104459.

[16]  T. Souradeep,et al.  Binned Cosmic Microwave Background Anisotropy Power Spectra: Peak Location , 2001, astro-ph/0102264.

[17]  S. Masi,et al.  The cosmic microwave background anisotropy power spectrum measured by archeops , 2002, astro-ph/0210305.

[18]  J. Silk COSMIC BLACK-BODY RADIATION AND GALAXY FORMATION. , 1968 .

[19]  M. Fukugita,et al.  Cosmic Microwave Background Observables and Their Cosmological Implications , 2001 .

[20]  P. Peebles Principles of Physical Cosmology , 1993 .

[21]  J. R. Bond,et al.  Cosmic background radiation anisotropies in universes dominated by nonbaryonic dark matter , 1984 .

[22]  R. Durrer,et al.  Acoustic Peaks and Dips in the Cosmic Microwave Background Power Spectrum: Observational Data and Cosmological Constraints , 2001, astro-ph/0111594.

[23]  U. Seljak,et al.  A Line of sight integration approach to cosmic microwave background anisotropies , 1996, astro-ph/9603033.

[24]  M. Fukugita,et al.  CMB Observables and Their Cosmological Implications , 2000, astro-ph/0006436.

[25]  J. E. Carlstrom,et al.  Degree Angular Scale Interferometer First Results: A Measurement of the Cosmic Microwave Background Angular Power Spectrum , 2001 .

[26]  S. Bose,et al.  On the observational determination of squeezing in relic gravitational waves and primordial density perturbations , 2001, gr-qc/0111064.

[27]  William H. Press,et al.  Numerical recipes in C , 2002 .

[28]  L. Knox,et al.  The Age of the Universe and the Cosmological Constant Determined from Cosmic Microwave Background Anisotropy Measurements , 2001 .

[29]  P. Peebles,et al.  Primeval Adiabatic Perturbation in an Expanding Universe , 1970 .

[30]  Paul J. Steinhardt,et al.  Cosmic Concordance and Quintessence , 1999, astro-ph/9901388.

[31]  W. Press,et al.  Numerical Recipes in C++: The Art of Scientific Computing (2nd edn)1 Numerical Recipes Example Book (C++) (2nd edn)2 Numerical Recipes Multi-Language Code CD ROM with LINUX or UNIX Single-Screen License Revised Version3 , 2003 .

[32]  S. Dodelson,et al.  Cosmic Microwave Background Anisotropies , 2001, astro-ph/0110414.

[33]  M. Zaldarriaga,et al.  Microwave Background Constraints on Cosmological Parameters , 1997, astro-ph/9702157.

[34]  Constraining the shape of the CMB: A peak-by-peak analysis , 2002, astro-ph/0207286.

[35]  The Location of CMB Peaks in a Universe with Dark Energy , 2001, astro-ph/0104486.

[36]  Douglas Scott,et al.  From Microwave Anisotropies to Cosmology , 1995, Science.

[37]  M. Doran,et al.  The location of cosmic microwave background peaks in a universe with dark energy , 2002 .

[38]  Measuring cosmological parameters with cosmic microwave background experiments. , 1993, Physical review letters.

[39]  J. R. Bond,et al.  Cosmic confusion: degeneracies among cosmological parameters derived from measurements of microwave background anisotropies , 1998 .

[40]  Anisotropies in the cosmic microwave background : an analytic approach , 1994, astro-ph/9407093.

[41]  Multiple Peaks in the Angular Power Spectrum of the Cosmic Microwave Background: Significance and Consequences for Cosmology , 2001, astro-ph/0105296.

[42]  Spergel,et al.  Cosmological-parameter determination with microwave background maps. , 1996, Physical review. D, Particles and fields.

[43]  L. Rezzolla,et al.  Classical and Quantum Gravity , 1996 .

[44]  Christopher R. Genovese,et al.  A Nonparametric Analysis of the Cosmic Microwave Background Power Spectrum , 2002 .

[45]  Small scale cosmic microwave background anisotropies as a probe of the geometry of the universe , 1994, astro-ph/9401003.

[46]  D. J. Fixsen,et al.  Calibrator Design for the COBE Far Infrared Absolute Spectrophotometer (FIRAS) , 1998, astro-ph/9810373.

[47]  Small scale cosmological perturbations: An Analytic approach , 1995, astro-ph/9510117.

[48]  Polarization and anisotropy of the microwave sky. , 1994, Physical review letters.

[49]  Weighing the universe with the cosmic microwave background. , 1995, Physical review letters.

[50]  M. Halpern,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Parameter Estimation Methodology , 2003 .

[51]  M. Halpern,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: The Angular Power Spectrum , 2003, astro-ph/0302217.

[52]  David W. Hogg,et al.  Distance measures in cosmology , 1999, astro-ph/9905116.