Tomography for quantum diagnostics

The quantification of relevant statistical errors is an indispensable but often neglected part of any tomographic scheme used for quantum diagnostic purposes. We introduce a novel resolution measure, which provides 'error bars' for any inferred quantity of interest. This is illustrated with an example of the diagnostics of non-classical states based on the value of the reconstructed Wigner function at the origin of the phase space. We show that such diagnostics is meaningful only when a lot of prior information on the measured quantum state is available. Our resolution measure also provides an effective tool for optimization and resolution tuning of tomography schemes.

[1]  Yoshiyuki Tsuda,et al.  Accuracy of quantum-state estimation utilizing Akaike's information criterion , 2003 .

[2]  G. D’Ariano,et al.  Maximum-likelihood estimation of the density matrix , 1999, quant-ph/9909052.

[3]  Daniel A. Lidar,et al.  Quantum Process Tomography: Resource Analysis of Different Strategies , 2007, quant-ph/0702131.

[4]  Z. Hradil Quantum-state estimation , 1996, quant-ph/9609012.

[5]  R. Blume-Kohout Optimal, reliable estimation of quantum states , 2006, quant-ph/0611080.

[6]  Andrew G. White,et al.  Measurement of qubits , 2001, quant-ph/0103121.

[7]  Philippe Grangier,et al.  Quantum homodyne tomography of a two-photon Fock state. , 2006, Physical review letters.

[8]  A. I. Lvovsky,et al.  Iterative maximum-likelihood reconstruction in quantum homodyne tomography , 2003, quant-ph/0311097.

[9]  S. A. Babichev,et al.  Remote preparation of a single-mode photonic qubit by measuring field quadrature noise. , 2003, Physical review letters.

[10]  Ruediger Schack,et al.  Unknown Quantum States and Operations, a Bayesian View , 2004, quant-ph/0404156.

[11]  H. Yuen,et al.  Review of 'Quantum Detection and Estimation Theory' (Helstrom, C. W.; 1976) , 1977, IEEE Transactions on Information Theory.

[12]  C. Fuchs,et al.  Unknown Quantum States: The Quantum de Finetti Representation , 2001, quant-ph/0104088.

[13]  Marco Genovese,et al.  Experimental reconstruction of photon statistics without photon counting. , 2005, Physical review letters.

[14]  Masahide Sasaki,et al.  Photon subtracted squeezed states generated with periodically poled KTiOPO(4). , 2007, Optics express.

[15]  K Mølmer,et al.  Generation of a superposition of odd photon number states for quantum information networks. , 2006, Physical review letters.

[16]  H. Paul,et al.  Measuring the quantum state of light , 1997 .

[17]  Z Hradil,et al.  Biased tomography schemes: an objective approach. , 2006, Physical review letters.

[18]  H. Akaike A new look at the statistical model identification , 1974 .

[19]  Robin Blume-Kohout,et al.  Accurate quantum state estimation via "Keeping the experimentalist honest" , 2006, quant-ph/0603116.

[20]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[21]  C. Helstrom Quantum detection and estimation theory , 1969 .

[22]  S. Konishi,et al.  Bayesian information criteria and smoothing parameter selection in radial basis function networks , 2004 .

[23]  Beck,et al.  Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum. , 1993, Physical review letters.

[24]  Vogel,et al.  Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase. , 1989, Physical review. A, General physics.