Learning of type-2 fuzzy logic systems by simulated annealing with adaptive step size

In this paper, a combination of an interval type-2 fuzzy logic system (IT2FLS) models and simulated annealing is used to predict the Mackey–Glass time series by searching for the best configuration of the IT2FLS. Simulated annealing is used to learn the parameters of the antecedent and the consequent parts of the rules for a Mamdani model. Simulated annealing is combined with a method to reduce the computations associated with it using adaptive step sizes. The results of the proposed methods are compared to results of a type-1 fuzzy logic system (T1FLS).

[1]  R. John,et al.  Type-2 Fuzzy Logic: A Historical View , 2007, IEEE Computational Intelligence Magazine.

[2]  Jerry M. Mendel,et al.  Type-2 fuzzy logic systems , 1999, IEEE Trans. Fuzzy Syst..

[3]  Dragan Kukolj,et al.  Design of adaptive Takagi-Sugeno-Kang fuzzy models , 2002, Appl. Soft Comput..

[4]  Marco Russo,et al.  Genetic fuzzy learning , 2000, IEEE Trans. Evol. Comput..

[5]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[6]  H. Hagras,et al.  Type-2 FLCs: A New Generation of Fuzzy Controllers , 2007, IEEE Computational Intelligence Magazine.

[7]  Jerry M. Mendel,et al.  Advances in type-2 fuzzy sets and systems , 2007, Inf. Sci..

[8]  T. Ross Fuzzy Logic with Engineering Applications , 1994 .

[9]  L. Glass,et al.  Oscillation and chaos in physiological control systems. , 1977, Science.

[10]  Lars Nolle,et al.  On Step Width Adaptation in Simulated Annealing for Continuous Parameter Optimisation , 2001, Fuzzy Days.

[11]  Robert Ivor John,et al.  Time series forecasting using a TSK fuzzy system tuned with simulated annealing , 2010, International Conference on Fuzzy Systems.

[12]  M. Locatelli Simulated Annealing Algorithms for Continuous Global Optimization , 2002 .

[13]  Ji-Chang Lo,et al.  A heuristic error-feedback learning algorithm for fuzzy modeling , 1999, IEEE Trans. Syst. Man Cybern. Part A.

[14]  Chin-Teng Lin,et al.  An ART-based fuzzy adaptive learning control network , 1997, IEEE Trans. Fuzzy Syst..

[15]  Chulhyun Kim,et al.  Forecasting time series with genetic fuzzy predictor ensemble , 1997, IEEE Trans. Fuzzy Syst..

[16]  J. K. Lenstra,et al.  Local Search in Combinatorial Optimisation. , 1997 .

[17]  Guixi Liu,et al.  Learning and tuning of fuzzy membership functions by simulated annealing algorithm , 2000, IEEE APCCAS 2000. 2000 IEEE Asia-Pacific Conference on Circuits and Systems. Electronic Communication Systems. (Cat. No.00EX394).

[18]  Paolo Dadone,et al.  Design Optimization of Fuzzy Logic Systems , 2001 .

[19]  Steve R. White,et al.  Concepts of scale in simulated annealing , 2008 .

[20]  Jerry M. Mendel,et al.  Centroid of a type-2 fuzzy set , 2001, Inf. Sci..

[21]  Frank Hoffmann,et al.  Evolutionary algorithms for fuzzy control system design , 2001, Proc. IEEE.

[22]  Chin-Teng Lin,et al.  An online self-constructing neural fuzzy inference network and its applications , 1998, IEEE Trans. Fuzzy Syst..

[23]  J. Mendel Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions , 2001 .

[24]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[25]  Robert John,et al.  Tuning of Type-2 Fuzzy Systems by Simulated A nnealing to Predict Time Series , 2011 .

[26]  Francisco Herrera,et al.  Ten years of genetic fuzzy systems: current framework and new trends , 2004, Fuzzy Sets Syst..

[27]  Hossein S. Zadeh,et al.  Soft computing in engineering design optimisation , 2006, J. Intell. Fuzzy Syst..

[28]  Tomoyuki Hiroyasu,et al.  Simulated annealing with advanced adaptive neighborhood , 2002 .

[29]  Jonathan M. Garibaldi,et al.  Application of simulated annealing fuzzy model tuning to umbilical cord acid-base interpretation , 1999, IEEE Trans. Fuzzy Syst..

[30]  Lotfi A. Zadeh,et al.  Soft computing and fuzzy logic , 1994, IEEE Software.

[31]  R. John,et al.  Tuning fuzzy systems by simulated annealing to predict time series with added noise , 2010, 2010 UK Workshop on Computational Intelligence (UKCI).

[32]  Jerry M. Mendel,et al.  Type-2 fuzzy sets made simple , 2002, IEEE Trans. Fuzzy Syst..

[33]  Sukhdev Khebbal,et al.  Intelligent Hybrid Systems , 1994 .