Current-controlled propagation of spin waves in antiparallel, coupled domains

[1]  Manfred Kohl,et al.  Novel Applications I , 2019 .

[2]  S. van Dijken,et al.  Control of spin-wave transmission by a programmable domain wall , 2018, Nature Communications.

[3]  D. Mitin,et al.  Magnon Straintronics: Reconfigurable Spin-Wave Routing in Strain-Controlled Bilateral Magnetic Stripes. , 2018, Physical review letters.

[4]  M. Gerken,et al.  Magnetic domain walls as broadband spin wave and elastic magnetisation wave emitters , 2018, Scientific Reports.

[5]  M. Stiles,et al.  Synthetic antiferromagnetic spintronics , 2018, Nature Physics.

[6]  C. Nan,et al.  Nanoscale control of stripe-ordered magnetic domain walls by vertical spin transfer torque in La0.67Sr0.33MnO3 film , 2018 .

[7]  A. Fert,et al.  Hybrid chiral domain walls and skyrmions in magnetic multilayers , 2017, Science Advances.

[8]  M. Marangolo,et al.  Magnetization dynamics of weak stripe domains in Fe–N thin films: a multi-technique complementary approach , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[9]  S. Dijken,et al.  Tunable Short-Wavelength Spin-Wave Emission and Confinement in Anisotropy-Modulated Multiferroic Heterostructures , 2017 .

[10]  T. Ono,et al.  Fast domain wall motion in the vicinity of the angular momentum compensation temperature of ferrimagnets. , 2017, Nature materials.

[11]  S. Urazhdin,et al.  Magnetization oscillations and waves driven by pure spin currents , 2016, 1609.06899.

[12]  A. Magrez,et al.  Sub-terahertz spectroscopy of magnetic resonance in BiFeO3 using a vector network analyzer , 2016 .

[13]  A. Manchon,et al.  Antiferromagnetic spintronics , 2016, 1606.04284.

[14]  Adekunle Olusola Adeyeye,et al.  A reconfigurable waveguide for energy-efficient transmission and local manipulation of information in a nanomagnetic device. , 2016, Nature nanotechnology.

[15]  D. Grundler Spintronics: Nanomagnonics around the corner. , 2016, Nature nanotechnology.

[16]  K. Schultheiss,et al.  Magnetic domain walls as reconfigurable spin-wave nanochannels. , 2016, Nature nanotechnology.

[17]  Jong Min Lee,et al.  All-Electrical Measurement of Interfacial Dzyaloshinskii-Moriya Interaction Using Collective Spin-Wave Dynamics. , 2016, Nano letters.

[18]  J. Wunderlich,et al.  Antiferromagnetic spintronics. , 2015, Nature nanotechnology.

[19]  R. Duine,et al.  New perspectives for Rashba spin-orbit coupling. , 2015, Nature materials.

[20]  D. Grundler,et al.  Reconfigurable magnonics heats up , 2015, Nature Physics.

[21]  A. Serga,et al.  Magnon spintronics , 2015, Nature Physics.

[22]  S. Parkin,et al.  Domain-wall velocities of up to 750 m s(-1) driven by exchange-coupling torque in synthetic antiferromagnets. , 2015, Nature nanotechnology.

[23]  Benjamin Krueger,et al.  Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. , 2015, Nature materials.

[24]  P. Bortolotti,et al.  Magnetic thin-film insulator with ultra-low spin wave damping for coherent nanomagnonics , 2014, Scientific Reports.

[25]  G. M. Stocks,et al.  Spin-transfer torque induced spin waves in antiferromagnetic insulators , 2014, 1409.5460.

[26]  C. Nan,et al.  Magnetic domain-wall motion twisted by nanoscale probe-induced spin transfer , 2014, 1407.3016.

[27]  M. Marangolo,et al.  Rotatable magnetic anisotropy in a Fe 0.8 Ga 0.2 thin film with stripe domains: Dynamics versus statics , 2014 .

[28]  C. Back,et al.  Dipolar-energy-activated magnetic domain pattern transformation driven by thermal fluctuations , 2013, Nature Communications.

[29]  B. Leven,et al.  Low spin-wave damping in amorphous Co40Fe40B20 thin films , 2013 .

[30]  Rupert Huber,et al.  Reciprocal Damon-Eshbach-type spin wave excitation in a magnonic crystal due to tunable magnetic symmetry , 2013 .

[31]  Tom Wu,et al.  Intrinsic domain-wall resistivity in half-metallic manganite thin films , 2012 .

[32]  S. Bandiera,et al.  Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection , 2011, Nature.

[33]  X. Wang,et al.  Magnonic Spin-Transfer Torque and Domain Wall Propagation , 2011, IEEE Transactions on Magnetics.

[34]  M. Kostylev,et al.  Magnonic crystal as a medium with tunable disorder on a periodical lattice. , 2011, Physical review letters.

[35]  M. Kostylev,et al.  Probing La0.7Sr0.3MnO3 multilayers via spin wave resonances , 2010, 1012.4273.

[36]  M. Kostylev,et al.  Analysis of collective spin-wave modes at different points within the hysteresis loop of a one-dimensional magnonic crystal comprising alternative-width nanostripes , 2010 .

[37]  C. Back,et al.  Anisotropic propagation and damping of spin waves in a nanopatterned antidot lattice. , 2010, Physical review letters.

[38]  Kang L. Wang,et al.  Magnonic logic circuits , 2010 .

[39]  M. Kostylev,et al.  Making a reconfigurable artificial crystal by ordering bistable magnetic nanowires. , 2010, Physical review letters.

[40]  M. Bailleul,et al.  Current-Induced Spin-Wave Doppler Shift , 2008, Science.

[41]  K. Guslienko,et al.  Strong radiation of spin waves by core reversal of a magnetic vortex and their wave behaviors in magnetic nanowire waveguides. , 2007, Physical review letters.

[42]  R. Hiergeist,et al.  Magnetic anisotropy of ferromagnetic La0.7(Sr, Ca)0.3MnO3 epitaxial films , 1999 .

[43]  J. Slonczewski Current-driven excitation of magnetic multilayers , 1996 .

[44]  A. Slavin,et al.  Theory of dipole-exchange spin wave spectrum for ferromagnetic films with mixed exchange boundary conditions , 1986 .

[45]  Schreiber,et al.  Layered magnetic structures: Evidence for antiferromagnetic coupling of Fe layers across Cr interlayers. , 1986, Physical review letters.

[46]  Alfred Leitenstorfer,et al.  Coherent terahertz control of antiferromagnetic spin waves , 2011 .

[47]  D. Goll,et al.  Transmission and reflection of spin waves in the presence of Néel walls , 2010 .

[48]  B. Hillebrands,et al.  Spin-wave calculations for multilayered structures. , 1990, Physical review. B, Condensed matter.