AdaBoost 학습 알고리즘과 칼만 필터를 이용한 손 영역 탐지 및 추적

웨어러블 컴퓨터의 개발로 인해 인간과 컴퓨터간의 전통적인 인터페이스는 점차 사용하기 불편하게 되었고 이는 새로운 형태의 인터페이스에 대한 요구로 이어지게 되었다. 본 논문에서는 이러한 추세에 맞추어 디지털 카메라를 통해 인간의 제스처를 인식하는 새로운 인터페이스를 연구하였다. 카메라를 통해 손제스처를 인식하는 방법은 빛과 같은 주변 환경에 영향을 받기 때문에 탐지기는 덜 민감해야 한다. 최근에 Viola 탐지기는 얼굴 탐지에 좋은 결과를 보여 주었으며, 이는 적분 이미지로부터 추출한 하얼 특징을 이용한 Adaboost 학습 알고리즘을 사용하였다. 본 논문에서는 이 방법을 손 영역 탐지에 적용하였으며 피부색을 이용한 고전적인 방법들과 비교 실험을 수행하였다. 실험 결과는 빛과 같은 방해 요소가 있는 환경에서 Viola 탐지기가 피부색을 이용한 탐지 방법보다 더 견고함을 보여 주었다.