The BRAVE Program. I. Improved Bulge Stellar Velocity Dispersion Estimates for a Sample of Active Galaxies

We present new bulge stellar velocity dispersion measurements for 10 active galaxies with secure MBH determinations from reverberation mapping. These new velocity dispersion measurements are based on spatially resolved kinematics from integral-field (IFU) spectroscopy. In all but one case, the field of view of the IFU extends beyond the effective radius of the galaxy, and in the case of Mrk 79 it extends to almost one half the effective radius. This combination of spatial resolution and field of view allows for secure determinations of stellar velocity dispersion within the effective radius for all 10 target galaxies. Spatially resolved maps of the first (V) and second (σ⋆) moments of the line of sight velocity distribution indicate the presence of kinematic substructure in most cases. In future projects we plan to explore methods of correcting for the effects of kinematic substructure in the derived bulge stellar velocity dispersion measurements.

[1]  C. D. Laney,et al.  THE LICK AGN MONITORING PROJECT 2011: DYNAMICAL MODELING OF THE BROAD-LINE REGION IN Mrk 50 , 2012, The Astrophysical Journal.

[2]  V. Wild,et al.  Stellar kinematics across the Hubble sequence in the CALIFA survey: general properties and aperture corrections , 2016, 1609.06446.

[3]  Feng Gao,et al.  MEGAMASER DISKS REVEAL A BROAD DISTRIBUTION OF BLACK HOLE MASS IN SPIRAL GALAXIES , 2016, 1606.00018.

[4]  L. F. A. Potsdam,et al.  The MUSE view of QSO PG1307+085: An elliptical galaxy on the $M_{BH}-\sigma_*$ relation interacting with its group environment , 2015, 1510.03864.

[5]  L. Ho,et al.  MEASURING THE MASS OF THE CENTRAL BLACK HOLE IN THE BULGELESS GALAXY NGC 4395 FROM GAS DYNAMICAL MODELING , 2015, 1507.04358.

[6]  T. Treu,et al.  A LOCAL BASELINE OF THE BLACK HOLE MASS SCALING RELATIONS FOR ACTIVE GALAXIES. III. THE MBH–σ RELATION , 2014, 1409.4428.

[7]  Y. Yoon,et al.  THE BLACK HOLE MASS–STELLAR VELOCITY DISPERSION RELATION OF NARROW-LINE SEYFERT 1 GALAXIES , 2014, 1412.7225.

[8]  M. Bentz,et al.  The AGN Black Hole Mass Database , 2014, 1411.2596.

[9]  B. Peterson,et al.  THE BLACK HOLE MASS OF NGC 4151. II. STELLAR DYNAMICAL MEASUREMENT FROM NEAR-INFRARED INTEGRAL FIELD SPECTROSCOPY , 2014, 1406.6735.

[10]  M. Childress,et al.  PyWiFeS: a rapid data reduction pipeline for the Wide Field Spectrograph (WiFeS) , 2013, Astrophysics and Space Science.

[11]  V. Debattista,et al.  The effect of bars on the M•-σe relation: offset, scatter and residuals correlations , 2013, 1309.2634.

[12]  D. Riechers,et al.  DO QUIESCENT AND ACTIVE GALAXIES HAVE DIFFERENT MBH–σ* RELATIONS? , 2013, 1305.2946.

[13]  L. Ho,et al.  Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies: Supplemental Material , 2013, 1304.7762.

[14]  Bradley M. Peterson,et al.  THE LOW-LUMINOSITY END OF THE RADIUS–LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI , 2013, 1303.1742.

[15]  D. Riechers,et al.  CALIBRATING STELLAR VELOCITY DISPERSIONS BASED ON SPATIALLY RESOLVED H-BAND SPECTRA FOR IMPROVING THE MBH–σ* RELATION , 2013, 1302.4742.

[16]  V. Debattista,et al.  DISK ASSEMBLY AND THE MBH–σe RELATION OF SUPERMASSIVE BLACK HOLES , 2013, 1301.2669.

[17]  C. Winge,et al.  Feeding versus feedback in AGNs from near-infrared IFU observations: the case of Mrk 79 , 2013, 1301.1242.

[18]  Timothy A. Davis,et al.  The ATLAS3D project XV: benchmark for early-type galaxies scaling relations from 260 dynamical models: mass-to-light ratio, dark matter, fundamental plane and mass plane , 2012, 1208.3522.

[19]  Andrew I. Sheinis,et al.  HexPak and GradPak: variable-pitch dual-head IFUs for the WIYN 3.5m Telescope Bench Spectrograph , 2012, Other Conferences.

[20]  T. Treu,et al.  A LOCAL BASELINE OF THE BLACK HOLE MASS SCALING RELATIONS FOR ACTIVE GALAXIES. II. MEASURING STELLAR VELOCITY DISPERSION IN ACTIVE GALAXIES , 2012 .

[21]  E. Athanassoula,et al.  An expanded Mbh–σ diagram, and a new calibration of active galactic nuclei masses , 2010, 1007.3834.

[22]  T. Treu,et al.  THE LICK AGN MONITORING PROJECT: THE MBH–σ* RELATION FOR REVERBERATION-MAPPED ACTIVE GALAXIES , 2010, 1004.0252.

[23]  Gabe Bloxham,et al.  The Wide Field Spectrograph (WiFeS): performance and data reduction , 2010, 1002.4472.

[24]  Chien Y. Peng,et al.  DETAILED DECOMPOSITION OF GALAXY IMAGES. II. BEYOND AXISYMMETRIC MODELS , 2009, 0912.0731.

[25]  Claudia Winge,et al.  THE GEMINI SPECTRAL LIBRARY OF NEAR-IR LATE-TYPE STELLAR TEMPLATES AND ITS APPLICATION FOR VELOCITY DISPERSION MEASUREMENTS , 2009, 0910.2619.

[26]  Ralf Bender,et al.  THE ASTROPHYSICAL JOURNAL Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE M–σ AND M–L RELATIONS IN GALACTIC BULGES, AND DETERMINATIONS OF THEIR INTRINSIC SCATTER , 2008 .

[27]  Jian Hu,et al.  The black hole mass–stellar velocity dispersion correlation: bulges versus pseudo-bulges , 2008, 0801.1481.

[28]  T. Heckman,et al.  The Black Hole Mass of NGC 4151: Comparison of Reverberation Mapping and Stellar Dynamical Measurements , 2007, 0708.1196.

[29]  Damien Jones,et al.  The Wide Field Spectrograph (WiFeS) , 2007, 0705.0287.

[30]  Harald Kuntschner,et al.  The SAURON project – IX. A kinematic classification for early‐type galaxies , 2007, astro-ph/0703531.

[31]  R. Abuter,et al.  The Star-forming Torus and Stellar Dynamical Black Hole Mass in the Seyfert 1 Nucleus of NGC 3227* , 2006 .

[32]  Astronomy,et al.  The Radius-Luminosity Relationship for Active Galactic Nuclei: The Effect of Host-Galaxy Starlight on Luminosity Measurements , 2006, astro-ph/0602412.

[33]  J. Cortés,et al.  The Nature of the Peculiar Virgo Cluster Galaxies NGC 4064 and NGC 4424 , 2005, astro-ph/0511081.

[34]  J. Moran,et al.  The Geometry of and Mass Accretion Rate through the Maser Accretion Disk in NGC 4258 , 2005, astro-ph/0504405.

[35]  Bradley M. Peterson,et al.  Supermassive Black Holes in Active Galactic Nuclei. II. Calibration of the Black Hole Mass-Velocity Dispersion Relationship for Active Galactic Nuclei , 2004 .

[36]  K. Gebhardt,et al.  The Relationship Between Black Hole Mass and Velocity Dispersion in Seyfert 1 Galaxies , 2004, astro-ph/0407383.

[37]  Eric Emsellem,et al.  Parametric Recovery of Line‐of‐Sight Velocity Distributions from Absorption‐Line Spectra of Galaxies via Penalized Likelihood , 2003, astro-ph/0312201.

[38]  E. Emsellem,et al.  Difficulties with Recovering the Masses of Supermassive Black Holes from Stellar Kinematical Data , 2002, astro-ph/0210379.

[39]  A. Kinney,et al.  A Hubble Space Telescope Survey of Extended [O III] λ5007 Emission in a Far-Infrared Selected Sample of Seyfert Galaxies: Observations , 2003, astro-ph/0307254.

[40]  Jan Van Harmelen,et al.  Gemini near-infrared integral field spectrograph (NIFS) , 2003, SPIE Astronomical Telescopes + Instrumentation.

[41]  Michele Cappellari,et al.  Adaptive spatial binning of integral-field spectroscopic data using Voronoi tessellations , 2003, astro-ph/0302262.

[42]  A. Moorwood,et al.  Instrument Design and Performance for Optical/Infrared Ground-based Telescopes, , 2003 .

[43]  L. Ho,et al.  A Study of the Direct Fitting Method for Measurement of Galaxy Velocity Dispersions , 2002, astro-ph/0209564.

[44]  L. Ho,et al.  Detailed Structural Decomposition of Galaxy Images , 2002, astro-ph/0204182.

[45]  Spain.,et al.  Empirical calibration of the near-infrared Ca ii triplet — I. The stellar library and index definition , 2001, astro-ph/0109157.

[46]  Ralf Bender,et al.  A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion , 2000, astro-ph/0006289.

[47]  D. Merritt,et al.  A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies , 2000, astro-ph/0006053.

[48]  W. Sparks,et al.  The Supermassive Black Hole of M87 and the Kinematics of Its Associated Gaseous Disk , 1997, astro-ph/9706252.

[49]  P. T. de Zeeuw,et al.  Improved Evidence for a Black Hole in M32 from HST/FOS Spectra. II. Axisymmetric Dynamical Models , 1997, astro-ph/9705081.