Wind-blown particulate transport: A review of computational fluid dynamics models

The transport of particulate by wind constitutes a relevant phenomenon in environmental sciences and civil engineering, because erosion, transport and deposition of particulate can cause serious problems to human infrastructures. From a mathematical point of view, modeling procedure for this phenomenon requires handling the interaction between different constituents, the transfer of a constituent from the air to the ground and viceversa, and consequently the ground-surface interaction and evolution. Several approaches have been proposed in the literature, according to the specific particulate or application. We here review these contributions focusing in particular on the behavior of sand and snow, which almost share the same mathematical modeling issues, and point out existing links and analogies with wind driven rain. The final aim is then to classify and analyze the different mathematical and computational models in order to facilitate a comparison among them. A first classification of the proposed models can be done distinguishing whether the dispersed phase is treated using a continuous or a particle-based approach, a second one on the basis of the type of equations solved to obtain particulate density and velocity, a third one on the basis of the interaction model between the suspended particles and the transporting fluid.

[1]  Claudio Canuto,et al.  A multi-timestep Robin-Robin domain decomposition method for time dependent advection-diffusion problems , 2019, Appl. Math. Comput..

[2]  Tsubasa Okaze,et al.  Development of a large-eddy simulation coupled with Lagrangian snow transport model , 2018, Journal of Wind Engineering and Industrial Aerodynamics.

[3]  H. Jasak,et al.  Two-way coupled Eulerian-Eulerian simulations of drifting snow with viscous treatment of the snow phase , 2017 .

[4]  Yue Wu,et al.  Numerical simulation of snowdrift on a membrane roof and the mechanical performance under snow loads , 2017, Cold Regions Science and Technology.

[5]  N. Huang,et al.  Sand transportation and reverse patterns over leeward face of sand dune , 2017 .

[6]  Dominique Derome,et al.  Computational fluid dynamics simulations of wind-driven rain on a mid-rise residential building with various types of facade details , 2017 .

[7]  Kaj Pettersson,et al.  Simulating wind-driven rain on building facades using Eulerian multiphase with rain phase turbulence model , 2016 .

[8]  Ming Gu,et al.  Numerical simulation and wind tunnel test for redistribution of snow on a flat roof , 2016 .

[9]  Y. Wang,et al.  3D numerical simulation of the evolutionary process of aeolian downsized crescent-shaped dunes , 2016 .

[10]  Dominique Derome,et al.  Wind-driven rain on two parallel wide buildings: Field measurements and CFD simulations , 2015 .

[11]  Yoshihide Tominaga,et al.  Development of a new k–ε model to reproduce the aerodynamic effects of snow particles on a flow field , 2015 .

[12]  H. Wang,et al.  Numerical simulations of wind-driven rain on building facades under various oblique winds based on Eulerian multiphase model , 2015 .

[13]  Xiaofei Shi,et al.  A lattice Boltzmann-Saltation model and its simulation of aeolian saltation at porous fences , 2015 .

[14]  Dominique Derome,et al.  Numerical modeling of turbulent dispersion for wind-driven rain on building facades , 2015, Environmental Fluid Mechanics.

[15]  Luca Bruno,et al.  A multiphase first order model for non-equilibrium sand erosion, transport and sedimentation , 2015, Appl. Math. Lett..

[16]  N. Huang,et al.  Analysis of Wind-blown Sand Movement over Transverse Dunes , 2014, Scientific Reports.

[17]  Dominique Derome,et al.  Numerical simulations of wind-driven rain on an array of low-rise cubic buildings and validation by field measurements , 2014 .

[18]  Bert Blocken,et al.  50 years of Computational Wind Engineering: Past, present and future , 2014 .

[19]  Pascal Dupont,et al.  Aeolian sand transport: Length and height distributions of saltation trajectories , 2014 .

[20]  Y. Wang,et al.  A numerical study of particle motion and two‐phase interaction in aeolian sand transport using a coupled large eddy simulation – discrete element method , 2014 .

[21]  Almerindo D. Ferreira,et al.  Numerical simulation of sand dune erosion , 2013, Environmental Fluid Mechanics.

[22]  Dominique Derome,et al.  CFD simulation and validation of wind-driven rain on a building facade with an Eulerian multiphase model , 2013 .

[23]  N. Huang,et al.  Numerical simulation of saltating particles in atmospheric boundary layer over flat bed and sand ripples , 2012 .

[24]  Qiusheng Li,et al.  Large Eddy Simulations of Wind-Driven Rain on Tall Building Facades , 2012 .

[25]  J. M. Lugo,et al.  Numerical simulation of Aeolian Saltation within the sediment transport layer using granular Kinetic Theory , 2012 .

[26]  P. Dupont,et al.  Particle velocity distribution in saltation transport. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Liejin Guo,et al.  Discrete particle simulation of mixed sand transport , 2012 .

[28]  Liqiang Kang,et al.  Discrete particle model of aeolian sand transport: Comparison of 2D and 2.5D simulations , 2012 .

[29]  J. Kok,et al.  The physics of wind-blown sand and dust , 2012, Reports on progress in physics. Physical Society.

[30]  L. Formaggia,et al.  Mathematical modelling for the evolution of aeolian dunes formed by a mixture of sands: entrainment-deposition formulation , 2011 .

[31]  Almerindo D. Ferreira,et al.  Computational modeling of the wind erosion on a sinusoidal pile using a moving boundary method , 2011 .

[32]  Yoshihide Tominaga,et al.  CFD modeling of snowdrift around a building: An overview of models and evaluation of a new approach , 2011 .

[33]  P. Dupont,et al.  Scaling laws in aeolian sand transport. , 2011, Physical review letters.

[34]  X. Zou,et al.  Vertical distribution of wind–sand interaction forces in aeolian sand transport , 2011 .

[35]  Qiusheng Li,et al.  Numerical simulations of wind-driven rain on building envelopes based on Eulerian multiphase model , 2010 .

[36]  Hans J. Herrmann,et al.  A continuous model for sand dunes: Review, new developments and application to barchan dunes and barchan dune fields , 2010 .

[37]  J. Carmeliet,et al.  Overview of three state-of-the-art wind-driven rain assessment models and comparison based on model theory , 2010 .

[38]  Liqiang Kang,et al.  Numerical investigation of particle velocity distributions in aeolian sand transport , 2010 .

[39]  Qiusheng Li,et al.  A new dynamic one‐equation subgrid‐scale model for large eddy simulations , 2009 .

[40]  J. T. Jenkins,et al.  Saltating particles in a turbulent boundary layer: experiment and theory , 2009, Journal of Fluid Mechanics.

[41]  N. Mendes,et al.  Numerical assessment of turbulence effect on the evaluation of wind-driven rain specific catch ratio , 2008 .

[42]  D. Wilcox Formulation of the k-w Turbulence Model Revisited , 2008 .

[43]  M. Beyers,et al.  Modeling transient snowdrift development around complex three-dimensional structures , 2008 .

[44]  Xiaohua Wu,et al.  APPLICATION OF A LOCAL SGS MODEL BASED ON COHERENT STRUCTURES TO COMPLEX GEOMETRIES , 2008, Proceeding of Fifth International Symposium on Turbulence and Shear Flow Phenomena.

[45]  Akashi Mochida,et al.  Prediction of wind environment and thermal comfort at pedestrian level in urban area , 2006 .

[46]  M. Ayrault,et al.  Large-eddy Simulation of the Dispersion of Solid Particles in a Turbulent Boundary Layer , 2006, Proceeding of Fourth International Symposium on Turbulence and Shear Flow Phenomena.

[47]  Madhava Syamlal,et al.  Extension of Hill–Koch–Ladd drag correlation over all ranges of Reynolds number and solids volume fraction , 2006 .

[48]  Liejin Guo,et al.  Eulerian–Lagrangian simulation of aeolian sand transport , 2006 .

[49]  José Miguel Pasini,et al.  Aeolian transport with collisional suspension , 2005, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[50]  Hiromichi Kobayashi,et al.  The subgrid-scale models based on coherent structures for rotating homogeneous turbulence and turbulent channel flow , 2005 .

[51]  Hans Jürgen Herrmann,et al.  Profile measurement and simulation of a transverse dune field in the Lençóis Maranhenses , 2004, cond-mat/0410178.

[52]  Tian-Jian Hsu,et al.  On two-phase sediment transport: sheet flow of massive particles , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[53]  A. G. Gerber,et al.  A convection–diffusion CFD model for aeolian particle transport , 2004 .

[54]  T. M. Harms,et al.  Numerical simulation of three-dimensional, transient snow drifting around a cube , 2004 .

[55]  José S. Andrade,et al.  Wind velocity and sand transport on a barchan dune , 2003 .

[56]  P. Claudin,et al.  Selection of dune shapes and velocities Part 2: A two-dimensional modelling , 2002, cond-mat/0201105.

[57]  Bruno Andreotti,et al.  Selection of dune shapes and velocities Part 1: Dynamics of sand, wind and barchans , 2002, cond-mat/0201103.

[58]  Guangqian Wang,et al.  DEM Applications to Aeolian Sediment Transport and Impact Process in Saltation , 2001 .

[59]  D. Joseph,et al.  Modeling and numerical simulation of particulate flows by the Eulerian–Lagrangian approach , 2001 .

[60]  P. Rubini,et al.  Three-dimensional Homogeneous Two-phaseFlow Modelling Of Drifting Sand Around An OpenGate , 2001 .

[61]  P. Sagaut BOOK REVIEW: Large Eddy Simulation for Incompressible Flows. An Introduction , 2001 .

[62]  H. Herrmann,et al.  Continuum saltation model for sand dunes. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[63]  S. Alhajraf Numerical simulation of drifting sand , 2000 .

[64]  Thomas K. Thiis,et al.  A comparison of numerical simulations and full-scale measurements of snowdrifts around buildings , 2000 .

[65]  J. Iversen,et al.  The effect of wind speed and bed slope on sand transport , 1999 .

[66]  Horia Hangan,et al.  Wind-driven rain studies. A C-FD-E approach , 1999 .

[67]  J. Jenkins,et al.  Collisional sheet flows of sediment driven by a turbulent fluid , 1998, Journal of Fluid Mechanics.

[68]  Per-Arne Sundsbø,et al.  Numerical simulations of wind deflection fins to control snow accumulation in building steps , 1998 .

[69]  Edmund C.C Choi,et al.  Numerical modelling of gust effect on wind-driven rain , 1997 .

[70]  Christine M. Hrenya,et al.  Effects of particle‐phase turbulence in gas‐solid flows , 1997 .

[71]  P. J. O'rourke,et al.  The multiphase particle-in-cell (MP-PIC) method for dense particulate flows , 1996 .

[72]  Sandrine Anquetin,et al.  Eulero-Lagrangian simulation of raindrop trajectories and impacts within the urban canopy , 1995 .

[73]  J. Lumley,et al.  Fluid Dynamics for Physicists , 1996 .

[74]  T. Shih,et al.  A new k-ϵ eddy viscosity model for high reynolds number turbulent flows , 1995 .

[75]  Alan G. Davenport,et al.  Wind, rain and the building envelope: a status report of ongoing research at the University of Western Ontario , 1994 .

[76]  F. Menter Two-equation eddy-viscosity turbulence models for engineering applications , 1994 .

[77]  Said Elghobashi,et al.  On predicting particle-laden turbulent flows , 1994 .

[78]  R. D. Felice,et al.  The voidage function for fluid-particle interaction systems , 1994 .

[79]  D. Gidaspow Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions , 1994 .

[80]  J. C. R. Hunt,et al.  Saltating particles over flat beds , 1993, Journal of Fluid Mechanics.

[81]  A. D. Gosman,et al.  Multidimensional modeling of turbulent two‐phase flows in stirred vessels , 1992 .

[82]  E. Choi Simulation of wind-driven-rain around a building , 1992 .

[83]  Y. Kaneda,et al.  Three dimensional numerical simulation of snowdrift , 1991 .

[84]  S. Elghobashi Particle-laden turbulent flows: direct simulation and closure models , 1991 .

[85]  A. Kolmogorov The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[86]  P. Moin,et al.  A dynamic subgrid‐scale eddy viscosity model , 1990 .

[87]  Hamid Arastoopour,et al.  Hydrodynamic analysis of dilute gas—solids flow in a vertical pipe , 1990 .

[88]  John W. Pomeroy,et al.  Saltation of snow , 1990 .

[89]  B. T. Werner,et al.  A Steady-State Model of Wind-Blown Sand Transport , 1990, The Journal of Geology.

[90]  D. Wilcox Reassessment of the scale-determining equation for advanced turbulence models , 1988 .

[91]  P. Haff,et al.  Simulation of Eolian Saltation , 1988, Science.

[92]  S. Orszag,et al.  Renormalization group analysis of turbulence. I. Basic theory , 1986 .

[93]  Robert S. Anderson,et al.  Sediment transport by wind: Toward a general model , 1986 .

[94]  C. P. Chen,et al.  A turbulence closure model for dilute gas‐particle flows , 1985 .

[95]  D. Jeffrey,et al.  Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield , 1984, Journal of Fluid Mechanics.

[96]  R. Greeley,et al.  Eolian erosion of the Martian surface, part 1: Erosion rate similitude , 1975 .

[97]  A. Dyer A review of flux-profile relationships , 1974 .

[98]  W. Jones,et al.  The prediction of laminarization with a two-equation model of turbulence , 1972 .

[99]  E. F. Bradley,et al.  Flux-Profile Relationships in the Atmospheric Surface Layer , 1971 .

[100]  C. Wen,et al.  A generalized method for predicting the minimum fluidization velocity , 1966 .

[101]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[102]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases , 1939 .

[103]  S. Balachandar,et al.  Turbulent Dispersed Multiphase Flow , 2010 .

[104]  A. Monin,et al.  Basic laws of turbulent mixing in the surface layer of the atmosphere , 2009 .

[105]  Ng Niels Deen,et al.  Review of discrete particle modeling of fluidized beds , 2007 .

[106]  J. Curtis,et al.  TWO-DIMENSIONAL NUMERICAL SIMULATION OF SALTATING PARTICLES USING GRANULAR KINETIC THEORY , 2007 .

[107]  T. Stathopoulos,et al.  CFD simulation of the atmospheric boundary layer: wall function problems , 2007 .

[108]  F. Menter,et al.  Ten Years of Industrial Experience with the SST Turbulence Model , 2003 .

[109]  Pierre Sagaut Large Eddy Simulation for Incompressible Flows. An Introduction , 2001 .

[110]  P. Gauer Blowing and drifting snow in alpine terrain: A physically-based numerical model and related field measurements , 1999 .

[111]  M. Naaim,et al.  Numerical simulation of drifting snow: erosion and deposition models , 1998, Annals of Glaciology.

[112]  Leslie M. Smith,et al.  Renormalization group analysis of turbulence , 2003 .

[113]  Anker Nielsen,et al.  Computer simulation of wind speed, wind pressure and snow accumulation around buildings (SNOW-SIM) , 1994 .

[114]  R. L. Brown,et al.  A two-dimensional computational model of turbulent atmospheric surface flows with drifting snow , 1993, Annals of Glaciology.

[115]  M. Kato The modeling of turbulent flow around stationary and vibrating square cylinders , 1993 .

[116]  Schuurmans,et al.  New k , 1987, Physical review. B, Condensed matter.

[117]  E. Barnea,et al.  A generalized approach to the fluid dynamics of particulate systems: Part 1. General correlation for fluidization and sedimentation in solid multiparticle systems , 1973 .

[118]  H. Schlichting Boundary Layer Theory , 1955 .

[119]  S. Ergun Fluid flow through packed columns , 1952 .