Br-rich tips of calcified crab claws are less hard but more fracture resistant: a comparison of mineralized and heavy-element biological materials.

[1]  J. Waite,et al.  A nonmineralized approach to abrasion-resistant biomaterials , 2007, Proceedings of the National Academy of Sciences.

[2]  R. Schofield,et al.  XAFS Studies of Transition Metal and Halogen Biomaterials in Invertebrate Tools , 2007 .

[3]  Ulf Ryde,et al.  EXAFS structure refinement supplemented by computational chemistry , 2006 .

[4]  C. Broomell,et al.  Halogenated Veneers: Protein Cross‐Linking and Halogenation in the Jaws of Nereis, a Marine Polychaete Worm , 2006, Chembiochem : a European journal of chemical biology.

[5]  J. Waite,et al.  Critical role of zinc in hardening of Nereis jaws , 2006, Journal of Experimental Biology.

[6]  J. Roche Biochimie comparée des scléroprotéines iodées des Anthozoaires et des Spongiaires , 1952, Experientia.

[7]  G. Pharr,et al.  Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology , 2004 .

[8]  J. van der Meer,et al.  Why do shore crabs not prefer the most profitable mussels? , 2003, The Journal of animal ecology.

[9]  D. Salt,et al.  Imaging of selenium in plants using tapered metal monocapillary optics. , 2003, Journal of synchrotron radiation.

[10]  R. Schofield,et al.  Zinc is incorporated into cuticular "tools" after ecdysis: the time course of the zinc distribution in "tools" and whole bodies of an ant and a scorpion. , 2003, Journal of insect physiology.

[11]  R. Schofield,et al.  Tooth hardness increases with zinc-content in mandibles of young adult leaf-cutter ants , 2002, Naturwissenschaften.

[12]  Y. Higo,et al.  Effects of humidity on Young's modulus in poly(methyl methacrylate) , 2002 .

[13]  S M Kurtz,et al.  A small punch test technique for characterizing the elastic modulus and fracture behavior of PMMA bone cement used in total joint replacement. , 2001, Biomaterials.

[14]  Philip Brownell,et al.  Scorpion Biology and Research , 2001 .

[15]  THE EVOLUTION OF ARMAMENT STRENGTH: EVIDENCE FOR A CONSTRAINT ON THE BITING PERFORMANCE OF CLAWS OF DUROPHAGOUS DECAPODS , 2001 .

[16]  A. Palmer,et al.  Variation in safety factors of claws within and among six species of Cancer crabs (Decapoda: Brachyura) , 2000 .

[17]  B. Stankiewicz,et al.  Molecular composition of the wall of insect olfactory sensilla-the chitin question. , 1999, Journal of insect physiology.

[18]  A. Palmer,et al.  Cuticle Strength and the Size-Dependence of Safety Factors in Cancer Crab Claws. , 1999, The Biological bulletin.

[19]  E. G. Boulding,et al.  Claw morphology, prey size selection and foraging efficiency in generalist and specialist shell-breaking crabs , 1998 .

[20]  J. J. Mecholsky,et al.  Hardness and toughness of exoskeleton material in the stone crab, Menippe mercenaria , 1996 .

[21]  R. Hughes,et al.  Criteria for prey size-selection in molluscivorous crabs with contrasting claw morphologies , 1995 .

[22]  Michael F. Ashby,et al.  The mechanical properties of natural materials. I. Material property charts , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[23]  K. Kramer,et al.  Chemical composition of the sclerotized black coral skeleton (Coelenterata: Antipatharia): a comparison of two species , 1994 .

[24]  Robert Lupton,et al.  Statistics in Theory and Practice , 2020 .

[25]  H. W. Lefevre,et al.  Analysis of unsectioned specimens: 2D and tomographic PIXE with STIM , 1993 .

[26]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[27]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[28]  F. Juanes,et al.  PREY SIZE SELECTION IN DUNGENESS CRABS: THE EFFECT OF CLAW DAMAGE' , 1990 .

[29]  R. Schofield X-Ray Microanalytic Concentration Measurements in Unsectioned Specimens: a Technique and its Application to Zinc, Manganese, and Iron Enriched Mechanical Structures of Organisms from Three Phyla , 1990 .

[30]  C. Wert Internal friction in solids , 1986 .

[31]  D. W. Phillips Between Pacific Tides , 1986 .

[32]  R. H. Boyd Relaxation processes in crystalline polymers: molecular interpretation — a review , 1985 .

[33]  R. H. Boyd Relaxation processes in crystalline polymers: experimental behaviour — a review , 1985 .

[34]  B. Ache 8 – Chemoreception and Thermoreception , 1982 .

[35]  P. E. Gibbs,et al.  Zinc - a major inorganic component of nereid polychaete jaws , 1979, Journal of the Marine Biological Association of the United Kingdom.

[36]  I. G. Main Vibrations and waves in physics , 1985 .

[37]  J. Blackwell,et al.  The structure of ?-chitin , 1978 .

[38]  G. Warner The biology of crabs , 1977 .

[39]  B. Welinder Halogenated tyrosines from the cuticle of Limulus polyphemus (L.). , 1972, Biochimica et biophysica acta.

[40]  S. Hunt,et al.  Isolation of a new naturally occurring halogenated amino acid: monochloromonobromotyrosine. , 1971, Biochimica et biophysica acta.

[41]  J. Ferry Viscoelastic properties of polymers , 1961 .

[42]  R. V. Bovbjerg Behavioral Ecology of the Crab, Pachygrapsus Crassipes , 1960 .

[43]  T. A. Stephenson,et al.  Between Pacific Tides , 1939 .