A review on superstructure optimization approaches in process system engineering

Abstract In this paper, we survey the main superstructure-based approaches in process system engineering, with a particular emphasis on the existing literature for automated superstructure generation. We examine both classical and more recent representations in terms of generality, ease of use, and tractability. We also discuss the implications that different representations may have on strategies for algebraic modeling and optimization. We then review the state-of-the-art in software implementations to support synthesis. Finally, we examine the use of evolutionary—recently referred to as superstructure-free—approaches, in which algorithmic procedures dynamically generate and evaluate candidate process structures.

[1]  Efstratios N. Pistikopoulos,et al.  A Systematic Framework for the synthesis of operable process intensification systems - Reactive separation systems , 2020, Comput. Chem. Eng..

[2]  Raymond R. Tan,et al.  Prospects and challenges for chemical process synthesis with P-graph , 2019 .

[3]  C. Maravelias,et al.  Utilizing stillage in the biorefinery: Economic, technological and energetic analysis , 2019, Applied Energy.

[4]  Jiří Jaromír Klemeš,et al.  Forty years of Heat Integration: Pinch Analysis (PA) and Mathematical Programming (MP) , 2013 .

[5]  G. Powers,et al.  Synthesis of system designs: III. Toward a process concept generator , 1971 .

[6]  Ali Elkamel,et al.  Superstructure optimization for the synthesis of chemical process flowsheets: Application to optimal hybrid membrane systems , 2009 .

[7]  Ignacio E. Grossmann,et al.  An outer-approximation algorithm for a class of mixed-integer nonlinear programs , 1986, Math. Program..

[8]  Botond Bertok,et al.  Production line balancing by P-graphs , 2020 .

[9]  Arthur W. Westerberg 23 Process Engineering , 1991 .

[10]  D. Rudd,et al.  Computer-Aided Synthesis of Chemical Process Designs. From Reaction Path Data to the Process Task Network , 1971 .

[11]  Ignacio E. Grossmann,et al.  Prosyn—an MINLP process synthesizer , 1990 .

[12]  M. Feinberg,et al.  General kinetic bounds on productivity and selectivity in reactor-separator systems of arbitrary design : Principles , 2001 .

[13]  Efstratios N. Pistikopoulos,et al.  An overview of process systems engineering approaches for process intensification: State of the art , 2018, Chemical Engineering and Processing - Process Intensification.

[14]  Jeffrey D. Kelly Production Modeling for Multimodal Operations , 2004 .

[15]  Philip Lutze,et al.  Conceptual Design of Flowsheet Options Based on Thermodynamic Insights for (Reaction−)Separation Processes Applying Process Intensification , 2014 .

[16]  Hon Loong Lam,et al.  Extended P-graph applications in supply chain and Process Network Synthesis , 2013 .

[17]  Kai Sundmacher,et al.  The FluxMax approach for simultaneous process synthesis and heat integration: Production of hydrogen cyanide , 2019, AIChE Journal.

[18]  Miguel J. Bagajewicz,et al.  Energy efficient water utilization systems in process plants , 2002 .

[19]  Ignacio E. Grossmann,et al.  Optimum design of heat exchanger networks , 1978 .

[20]  Yongrong Yang,et al.  Integrating purifiers in refinery hydrogen networks: a retrofit case study , 2010 .

[21]  Ignacio E. Grossmann,et al.  Applications of mixed-integer linear programming in process synthesis , 1980 .

[22]  I. Grossmann Review of Nonlinear Mixed-Integer and Disjunctive Programming Techniques , 2002 .

[23]  Mirko Skiborowski,et al.  Synthesis of Intensified Processes from a Superstructure of Phenomena Building Blocks , 2016 .

[24]  Tatiana Morosuk,et al.  Systematic Optimization of the Design of Steam Cycles Using MINLP and Differential Evolution , 2014 .

[25]  Hirokazu Sugiyama,et al.  Superstructure-based process synthesis and economic assessment under uncertainty for solid drug product manufacturing , 2020, BMC Chemical Engineering.

[26]  Ignacio E. Grossmann,et al.  Generalized Disjunctive Programming Model for the Optimal Synthesis of Thermally Linked Distillation Columns , 2001 .

[27]  Edelmira D. Gálvez,et al.  A new group contribution method for mineral concentration processes , 2015, Comput. Chem. Eng..

[28]  Christos T. Maravelias,et al.  A superstructure optimization approach for process synthesis under complex reaction networks , 2018, Chemical Engineering Research and Design.

[29]  S. Hauan,et al.  A Phenomena Based Design Approach to Reactive Distillation , 1998 .

[30]  Valery Stennikov,et al.  Optimization of energy sources structure to minimize environment pollution , 2018 .

[31]  Rafiqul Gani,et al.  Sustainable solutions by integrating process synthesis-intensification , 2019, Comput. Chem. Eng..

[32]  A. M. Geoffrion Generalized Benders decomposition , 1972 .

[33]  I. Grossmann,et al.  Global optimization of nonconvex mixed-integer nonlinear programming (MINLP) problems in process synthesis , 1988 .

[34]  Heriberto Cabezas,et al.  Energy consumption optimization of a manufacturing plant by the application of the p-graph framework , 2018 .

[35]  David Kendrick,et al.  GAMS, a user's guide , 1988, SGNM.

[36]  Michael Baldea,et al.  A survey of optimal process design capabilities and practices in the chemical and petrochemical industries , 2018, Comput. Chem. Eng..

[37]  Matthew J. Realff,et al.  Process synthesis and design for multi-chip module fabrication , 1996 .

[38]  Endre Rev,et al.  Handling of removable discontinuities in MINLP models for process synthesis problems, formulations of the Kremser equation , 2002 .

[39]  Alexandre Pagot,et al.  Optimization approaches to the integrated system of catalytic reforming and isomerization processes in petroleum refinery , 2020, Comput. Chem. Eng..

[40]  James M. Douglas,et al.  A hierarchical decision procedure for process synthesis , 1985 .

[41]  Rafiqul Gani,et al.  A computer-aided software-tool for sustainable process synthesis-intensification , 2017, Comput. Chem. Eng..

[42]  R. Srinivasan,et al.  Systematic Waste Minimization in Chemical Processes. 3. Batch Operations , 2006 .

[43]  Zdravko Kravanja,et al.  Translation of variables and implementation of efficient logic‐based techniques in the MINLP process synthesizer MIPSYN , 2009 .

[44]  Ferenc Friedler,et al.  Process synthesis involving multi-period operations by the P-graph framework , 2015, Comput. Chem. Eng..

[45]  Ignacio E. Grossmann,et al.  Batch scheduling with quality-based changeovers , 2020, Comput. Chem. Eng..

[46]  André Bardow,et al.  Automated superstructure-based synthesis and optimization of distributed energy supply systems , 2013 .

[47]  Denny K. S. Ng,et al.  Hierarchical Decomposition Approach for Process Synthesis of Integrated Biorefinery , 2015 .

[48]  Rafiqul Gani,et al.  Time for a new class of methods and computer aided tools to address the challenges facing us , 2018 .

[49]  Qi Chen,et al.  Modern Modeling Paradigms Using Generalized Disjunctive Programming , 2019, Processes.

[50]  Artur M. Schweidtmann,et al.  Deterministic Global Optimization with Artificial Neural Networks Embedded , 2018, Journal of Optimization Theory and Applications.

[51]  Ignacio E. Grossmann,et al.  On the Systematic Synthesis of Sustainable Biorefineries , 2013 .

[52]  Michael F. Malone,et al.  Synthesis of Azeotropic Distillation Systems with Recycles , 2003 .

[53]  Endre Rev,et al.  Optimization of desalination location problem using MILP , 2007 .

[54]  Christos T. Maravelias,et al.  A superstructure-based framework for bio-separation network synthesis , 2017, Comput. Chem. Eng..

[55]  Miguel J. Bagajewicz,et al.  Mass/heat‐exchange network representation of distillation networks , 1992 .

[56]  André Bardow,et al.  Superstructure-free synthesis and optimization of distributed industrial energy supply systems , 2012 .

[57]  Arthur W. Westerberg,et al.  A review of process synthesis , 1981 .

[58]  Athanasios I. Papadopoulos,et al.  Process flowsheet design optimization for various amine-based solvents in post-combustion CO2 capture plants , 2016 .

[59]  Zhenmin Cheng,et al.  Pyrolysis of heavy oil in the presence of supercritical water: The reaction kinetics in different phases , 2015 .

[60]  L. T. Fan,et al.  Graph-theoretic approach to process synthesis: axioms and theorems , 1992 .

[61]  Nikolaos V. Sahinidis,et al.  Derivative-free optimization: a review of algorithms and comparison of software implementations , 2013, J. Glob. Optim..

[62]  Ignacio E. Grossmann,et al.  Simultaneous optimization and heat integration with process simulators , 1988 .

[63]  John Daniel Siirola,et al.  A Flexible Framework and Model Library for Process Simulation, Optimization and Control , 2018 .

[64]  George Tsatsaronis,et al.  A relaxation-based heuristic for the design of cost-effective energy conversion systems , 2006 .

[65]  Qi Chen,et al.  Recent Developments and Challenges in Optimization-Based Process Synthesis. , 2017, Annual review of chemical and biomolecular engineering.

[66]  Ignacio E. Grossmann,et al.  An overview of process intensification methods , 2019, Current Opinion in Chemical Engineering.

[67]  Thomas A. Adams,et al.  Challenges and future directions for process and product synthesis and design , 2019, Comput. Chem. Eng..

[68]  Zuwei Liao,et al.  Hydrogen sulfide removal process embedded optimization of hydrogen network , 2012 .

[69]  Efstratios N. Pistikopoulos,et al.  A framework for the synthesis of reactive absorption columns , 2006 .

[70]  Endre Rev,et al.  Process flowsheet superstructures: Structural multiplicity and redundancy: Part II: Ideal and binarily minimal MINLP representations , 2005, Comput. Chem. Eng..

[71]  Salih Emre Demirel,et al.  Fuel Gas Network Synthesis Using Block Superstructure , 2018 .

[72]  Thibaut Neveux,et al.  Ab-initio process synthesis using evolutionary programming , 2018, Chemical Engineering Science.

[73]  Rebecca Frauzem,et al.  A Generic Methodology for Superstructure Optimization of Different Processing Networks , 2016 .

[74]  Jianping Li,et al.  Process synthesis using block superstructure with automated flowsheet generation and optimization , 2018, AIChE Journal.

[75]  Kai Sundmacher,et al.  Overview of Surrogate Modeling in Chemical Process Engineering , 2019, Chemie Ingenieur Technik.

[76]  Xiaohui Xu,et al.  A ROBUST COMBINATORIAL APPROACH BASED ON P-GRAPH FOR SUPERSTRUCTURE GENERATION IN DOWNSTREAM BIOPROCESSES , 2015 .

[77]  Ignacio E. Grossmann,et al.  A global optimization algorithm for nonconvex generalized disjunctive programming and applications to process systems , 2001 .

[78]  Selen Cremaschi,et al.  Process synthesis of biodiesel production plant using artificial neural networks as the surrogate models , 2012, Comput. Chem. Eng..

[79]  Ignacio E. Grossmann,et al.  Process systems Engineering: Academic and industrial perspectives , 2019, Comput. Chem. Eng..

[80]  Ignacio E. Grossmann,et al.  Review of Mixed‐Integer Nonlinear and Generalized Disjunctive Programming Methods , 2014 .

[81]  Vasilios Manousiouthakis,et al.  IDEAS approach to process network synthesis: Application to multicomponent MEN , 2000 .

[82]  Ferenc Friedler,et al.  Synthesis of sustainable energy supply chain by the P-graph framework , 2012 .

[83]  Ferenc Friedler,et al.  Holistic Approach to Process Retrofitting: Application to Downstream Process for Biochemical Production of Organics , 2006 .

[84]  L. T. Fan,et al.  Graph-theoretic approach to process synthesis: Polynomial algorithm for maximal structure generation , 1993 .

[85]  I. Grossmann,et al.  Logic-based MINLP algorithms for the optimal synthesis of process networks , 1996 .

[86]  Mirko Skiborowski,et al.  Optimization-Based Approach to Process Synthesis for Process Intensification: Synthesis of Reaction-Separation Processes , 2018 .

[87]  Vasilios Manousiouthakis,et al.  Infinite DimEnsionAl State-space as a systematic process intensification tool: Energetic intensification of hydrogen production , 2017 .

[88]  Rafiqul Gani,et al.  New Vistas in Chemical Product and Process Design. , 2016, Annual review of chemical and biomolecular engineering.

[89]  Efstratios N. Pistikopoulos,et al.  Generalized modular representation framework for process synthesis , 1996 .

[90]  Günter Rudolph,et al.  Looking for Alternatives: Optimization of Energy Supply Systems without Superstructure , 2014, EvoApplications.

[91]  Ignacio E. Grossmann,et al.  A modelling and decomposition strategy for the MINLP optimization of process flowsheets , 1989 .

[92]  Karsten-Ulrich Klatt,et al.  Perspectives for process systems engineering - Personal views from academia and industry , 2009, Comput. Chem. Eng..

[93]  D. Glasser,et al.  A geometric approach to steady flow reactors: the attainable region and optimization in concentration space , 1987 .

[94]  Robert Amor,et al.  Super-structure and super-structure free design search space representations for a building spatial design in multi-disciplinary building optimisation , 2016 .

[95]  H. L. Lam,et al.  Debottlenecking of sustainability performance for integrated biomass supply chain: P-graph approach , 2018, Journal of Cleaner Production.

[96]  Lorenz T. Biegler,et al.  Integrated scheduling and dynamic optimization of batch processes using state equipment networks , 2012 .

[97]  Costin Sorin Bildea,et al.  Process Synthesis by the Hierarchical Approach , 2014 .

[98]  Chih-Yao Lin,et al.  Simultaneous optimization approach for integrated water-allocation and heat-exchange networks , 2008 .

[99]  Antonio Espuña Camarasa,et al.  Integrated batch process development based on mixed-logic dynamic optimization , 2014 .

[100]  Christos T. Maravelias,et al.  Surrogate‐based superstructure optimization framework , 2011 .

[101]  C. Maravelias,et al.  Process synthesis and economic analysis of cyanobacteria biorefineries: A superstructure-based approach , 2019, Applied Energy.

[102]  Ignacio E. Grossmann,et al.  Energy optimization for the design of corn‐based ethanol plants , 2008 .

[103]  C. Pantelides,et al.  Optimal design of thermally coupled distillation columns , 1999 .

[104]  L. T. Fan,et al.  Combinatorial foundation for logical formulation in process network synthesis , 2000 .

[105]  Patrick Linke,et al.  Attainable reaction and separation processes from a superstructure‐based method , 2003 .

[106]  Atsunobu Ichikawa,et al.  Synthesis of optimal processing system by an integrated approach , 1972 .

[107]  B. Linnhoff,et al.  The pinch design method for heat exchanger networks , 1983 .

[108]  Mirko Skiborowski,et al.  Analysis of TBA-Based ETBE Production by Means of an Optimization-Based Process-Synthesis Approach , 2018, Chemie Ingenieur Technik.

[109]  Patrick Linke,et al.  Systematic identification of optimal process designs for the production of acetic acid via ethane oxidation , 2007 .

[110]  Tong Zhang,et al.  Pattern recognition in chemical process flowsheets , 2019 .

[111]  Charles A. Desoer,et al.  Linear System Theory: The State Space Approach , 2008 .

[112]  Lorenz T. Biegler,et al.  A trust region filter method for glass box/black box optimization , 2016 .

[113]  I. Grossmann,et al.  A systematic modeling framework of superstructure optimization in process synthesis , 1999 .

[114]  Jeffrey Dean Kelly,et al.  The Unit-Operation-Stock Superstructure ( UOSS ) and the Quantity-Logic-Quality Paradigm ( QLQP ) for Production Scheduling in the Process Industries , 2005 .

[115]  Aage Fredenslund,et al.  Vapor-liquid Equilibria Using Unifac: A Group-Contribution Method , 2012 .

[116]  Rafiqul Gani,et al.  Hybrid method and associated tools for synthesis of sustainable process flowsheets , 2019, Comput. Chem. Eng..

[117]  Christos T. Maravelias,et al.  A superstructure representation, generation, and modeling framework for chemical process synthesis , 2016 .

[118]  Christos T. Maravelias,et al.  Surrogate-Based Process Synthesis , 2010 .

[119]  Arthur Westerberg,et al.  A retrospective on design and process synthesis , 2004, Comput. Chem. Eng..

[120]  Rafiqul Gani,et al.  Process synthesis, design and analysis using a process-group contribution method , 2015, Comput. Chem. Eng..

[121]  Matthias Wessling,et al.  Can the variance in membrane performance influence the design of organic solvent nanofiltration processes? , 2019, Journal of Membrane Science.

[122]  Debangsu Bhattacharyya,et al.  Next Generation Multi-Scale Process Systems Engineering Framework , 2018 .

[123]  I. Grossmann,et al.  An algorithm for the use of surrogate models in modular flowsheet optimization , 2008 .

[124]  I. Grossmann,et al.  New algorithms for nonlinear generalized disjunctive programming , 2000 .

[125]  Pedro M. Castro,et al.  Scope for industrial applications of production scheduling models and solution methods , 2014, Comput. Chem. Eng..

[126]  Jeffrey J. Siirola,et al.  Process synthesis prospective , 2004, Comput. Chem. Eng..

[127]  Endre Rev,et al.  Process flowsheet superstructures: Structural multiplicity and redundancy: Part I: Basic GDP and MINLP representations , 2005, Comput. Chem. Eng..

[128]  Christos T. Maravelias,et al.  A generalized superstructure-based framework for process synthesis , 2020, Comput. Chem. Eng..

[129]  R. Gani,et al.  Group contribution based process flowsheet synthesis, design and modelling , 2005 .

[130]  Rafiqul Gani,et al.  Computer Aided Flowsheet Design using Group Contribution Methods , 2011 .

[131]  Christos T. Maravelias,et al.  Optimization‐based process synthesis under seasonal and daily variability: Application to concentrating solar power , 2018, AIChE Journal.

[132]  Martin John Atkins,et al.  Total site mass, heat and power integration using process integration and process graph , 2017 .

[133]  Patrick Linke,et al.  A Multi-Level Methodology for Conceptual Reaction-Separation Process Design , 2007 .

[134]  Ferenc Friedler,et al.  Combinatorial algorithms for process synthesis , 1992 .

[135]  L. T. Fan,et al.  Combinatorially Accelerated Branch-and-Bound Method for Solving the MIP Model of Process Network Synthesis , 1996 .

[136]  Mirko Skiborowski,et al.  Optimization-Based Approach To Process Synthesis for Process Intensification: General Approach and Application to Ethanol Dehydration , 2017 .

[137]  Michael F. Doherty,et al.  Target bounds on reaction selectivity via Feinberg's CFSTR equivalence principle , 2018 .

[138]  Xingang Li,et al.  Optimization of coal-based methanol distillation scheme using process superstructure method to maximize energy efficiency , 2017 .

[139]  Michael Baldea,et al.  Modular manufacturing processes: Status, challenges, and opportunities , 2017 .

[140]  Efstratios N. Pistikopoulos,et al.  Towards the synthesis of modular process intensification systems with safety and operability considerations - application to heat exchanger network , 2018 .

[141]  Ali Elkamel,et al.  Integration of Membrane Processes for Optimal Wastewater Management , 2013 .

[142]  Constantinos C. Pantelides,et al.  Design of reaction/separation networks using detailed models , 1995 .

[143]  Efstratios N. Pistikopoulos,et al.  Generalized modular framework for the synthesis of heat integrated distillation column sequences , 2005 .

[144]  Rafiqul Gani,et al.  Phenomena Based Methodology for Process Synthesis Incorporating Process Intensification , 2013 .

[145]  Ignacio E. Grossmann,et al.  Integration of hierarchical decomposition and mathematical programming for the synthesis of process flowsheets , 1998 .

[146]  Endre Rev,et al.  R-graph-based distillation column superstructure and MINLP model , 2005 .

[147]  Loïc d'Anterroches,et al.  Group contribution based process flowsheet synthesis, design and modelling , 2004 .

[148]  Ignacio E. Grossmann,et al.  Simultaneous optimization and heat integration of chemical processes , 1986 .

[149]  Ignacio E. Grossmann,et al.  MINLP optimization strategies and algorithms for process synthesis , 1989 .

[150]  David C. Miller,et al.  Learning surrogate models for simulation‐based optimization , 2014 .

[151]  Efstratios N. Pistikopoulos,et al.  Circular Economy - A challenge and an opportunity for Process Systems Engineering , 2020, Comput. Chem. Eng..

[152]  Rafiqul Gani,et al.  An integrated computer aided system for integrated design of chemical processes , 1997 .

[153]  Ignacio E. Grossmann,et al.  Pyomo.GDP: Disjunctive Models in Python , 2018 .

[154]  Ignacio E. Grossmann,et al.  Synthesis of Interplant Water-Allocation and Heat-Exchange Networks. Part 1: Fixed Flow Rate Processes , 2012 .

[155]  Dominic C.Y. Foo,et al.  Simultaneous water and energy integration with isothermal and non-isothermal mixing – A P-graph approach , 2019, Resources, Conservation and Recycling.

[156]  R. Sargent,et al.  A general algorithm for short-term scheduling of batch operations */I , 1993 .

[157]  R. Raman,et al.  Modelling and computational techniques for logic based integer programming , 1994 .

[158]  I. Grossmann,et al.  ADVANCES IN MATHEMATICAL PROGRAMMING FOR THE SYNTHESIS OF PROCESS SYSTEMS , 1999 .

[159]  Ignasi Palou-Rivera,et al.  The RAPID Manufacturing Institute – Reenergizing US efforts in process intensification and modular chemical processing , 2019, Chemical Engineering and Processing - Process Intensification.

[160]  Yongrong Yang,et al.  Simultaneous optimization of heat-integrated water allocation networks , 2016 .

[161]  Michael Baldea,et al.  Challenges in process optimization for new feedstocks and energy sources , 2018, Comput. Chem. Eng..

[162]  Raymond R. Tan,et al.  Fuzzy P-graph for optimal synthesis of cogeneration and trigeneration systems , 2018, Energy.

[163]  Jianping Li,et al.  Systematic process intensification using building blocks , 2017, Comput. Chem. Eng..

[164]  Zdravko Kravanja,et al.  MINLP Synthesis of Processes for the Production of Biogas from Organic and Animal Waste , 2009 .

[165]  Rafiqul Gani,et al.  Computer‐aided process intensification: Challenges, trends and opportunities , 2019, AIChE Journal.

[166]  Ignacio E. Grossmann,et al.  Simultaneous optimization models for heat integration—II. Heat exchanger network synthesis , 1990 .

[167]  Selen Cremaschi A perspective on process synthesis: Challenges and prospects , 2015, Comput. Chem. Eng..