Activated STAT1 transcription factors conduct distinct saltatory movements in the cell nucleus.

[1]  Sanjay Tyagi,et al.  Balbiani ring mRNPs diffuse through and bind to clusters of large intranuclear molecular structures. , 2010, Biophysical journal.

[2]  U. Vinkemeier,et al.  Molecular basis for the recognition of phosphorylated STAT1 by importin alpha5. , 2010, Journal of molecular biology.

[3]  Philipp Bucher,et al.  MER41 Repeat Sequences Contain Inducible STAT1 Binding Sites , 2010, PloS one.

[4]  Davide Mazza,et al.  FRAP and kinetic modeling in the analysis of nuclear protein dynamics: what do we really know? , 2010, Current opinion in cell biology.

[5]  U. Kubitscheck,et al.  Single ovalbumin molecules exploring nucleoplasm and nucleoli of living cell nuclei. , 2010, Biochimica et biophysica acta.

[6]  J. Elf,et al.  Single molecule approaches to transcription factor kinetics in living cells , 2009, FEBS letters.

[7]  Jan Ellenberg,et al.  Molecular crowding affects diffusion and binding of nuclear proteins in heterochromatin and reveals the fractal organization of chromatin , 2009, The EMBO journal.

[8]  H. Leonhardt,et al.  Discontinuous movement of mRNP particles in nucleoplasmic regions devoid of chromatin , 2008, Proceedings of the National Academy of Sciences.

[9]  U. Vinkemeier,et al.  Tyrosine phosphorylation regulates the partitioning of STAT1 between different dimer conformations , 2008, Proceedings of the National Academy of Sciences.

[10]  Paul Wach,et al.  Evidence for a common mode of transcription factor interaction with chromatin as revealed by improved quantitative fluorescence recovery after photobleaching. , 2008, Biophysical journal.

[11]  H. Leonhardt,et al.  Probing Intranuclear Environments at the Single-Molecule Level , 2007, Biophysical journal.

[12]  Allen D. Delaney,et al.  Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing , 2007, Nature Methods.

[13]  J. Elf,et al.  Supporting Online Material Materials and Methods Figs. S1 to S3 References Probing Transcription Factor Dynamics at the Single-molecule Level in a Living Cell , 2022 .

[14]  Ulrich Kubitscheck,et al.  Single-molecule tracking in eukaryotic cell nuclei , 2006, Analytical and bioanalytical chemistry.

[15]  Peter Hinow,et al.  The DNA binding activity of p53 displays reaction-diffusion kinetics. , 2006, Biophysical journal.

[16]  I. Lödige,et al.  Nuclear Export Determines the Cytokine Sensitivity of STAT Transcription Factors* , 2005, Journal of Biological Chemistry.

[17]  N. Meilhac,et al.  Detection of confinement and jumps in single-molecule membrane trajectories. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  B. Paschal,et al.  Mechanisms of Receptor‐Mediated Nuclear Import and Nuclear Export , 2005, Traffic.

[19]  U. Vinkemeier,et al.  Nucleocytoplasmic shuttling of STAT transcription factors. , 2004, European journal of biochemistry.

[20]  Andreas Marg,et al.  Nucleocytoplasmic shuttling by nucleoporins Nup153 and Nup214 and CRM1-dependent nuclear export control the subcellular distribution of latent Stat1 , 2004, The Journal of cell biology.

[21]  J. Marko,et al.  How do site-specific DNA-binding proteins find their targets? , 2004, Nucleic acids research.

[22]  Andreas Marg,et al.  DNA binding controls inactivation and nuclear accumulation of the transcription factor Stat1. , 2003, Genes & development.

[23]  J. Darnell,et al.  Signalling: STATs: transcriptional control and biological impact , 2002, Nature Reviews Molecular Cell Biology.

[24]  J. ten Hoeve,et al.  Identification of a Nuclear Stat1 Protein Tyrosine Phosphatase , 2002, Molecular and Cellular Biology.

[25]  I. Lödige,et al.  Constitutive and IFN‐γ‐induced nuclear import of STAT1 proceed through independent pathways , 2002 .

[26]  I. Kerr,et al.  STAT1 from the cell membrane to the DNA , 2001, The EMBO journal.

[27]  L. Kinnunen,et al.  Arginine/Lysine-rich Structural Element Is Involved in Interferon-induced Nuclear Import of STATs* , 2001, The Journal of Biological Chemistry.

[28]  D. Levy,et al.  Specificity of signaling by STAT1 depends on SH2 and C‐terminal domains that regulate Ser727 phosphorylation, differentially affecting specific target gene expression , 2001, The EMBO journal.

[29]  S. Simon,et al.  Tracking single proteins within cells. , 2000, Biophysical journal.

[30]  G. Stark,et al.  How Stat1 mediates constitutive gene expression: a complex of unphosphorylated Stat1 and IRF1 supports transcription of the LMP2 gene , 2000, The EMBO journal.

[31]  B. Chait,et al.  DNA binding of in vitro activated Stat1 alpha, Stat1 beta and truncated Stat1: interaction between NH2‐terminal domains stabilizes binding of two dimers to tandem DNA sites. , 1996, The EMBO journal.

[32]  K. Jacobson,et al.  Detection of temporary lateral confinement of membrane proteins using single-particle tracking analysis. , 1995, Biophysical journal.

[33]  M. Saxton,et al.  Single-particle tracking: effects of corrals. , 1995, Biophysical journal.

[34]  M. Saxton,et al.  Lateral diffusion in an archipelago. Single-particle diffusion. , 1993, Biophysical journal.

[35]  M. Saxton,et al.  Lateral diffusion in an archipelago. Effects of impermeable patches on diffusion in a cell membrane. , 1982, Biophysical journal.

[36]  U. Vinkemeier,et al.  MOLECULAR BASIS FOR THE RECOGNITION OF PHOSPHORYLATED STAT1 BY IMPORTIN α 5 , 2011 .

[37]  A. Houtsmuller,et al.  Nuclear proteins: finding and binding target sites in chromatin , 2010, Chromosome Research.

[38]  U. Kubitscheck,et al.  Single molecule tracking for studying nucleocytoplasmic transport and intranuclear dynamics. , 2009, Methods in molecular biology.

[39]  Martin E van Royen,et al.  Fluorescence recovery after photobleaching (FRAP) to study nuclear protein dynamics in living cells. , 2009, Methods in molecular biology.

[40]  T. Misteli,et al.  Transcription dynamics. , 2009, Molecular cell.