Joint scaling limit of site percolation on random triangulations in the metric and peanosphere sense

Recent works have shown that random triangulations decorated by critical ($p=1/2$) Bernoulli site percolation converge in the scaling limit to a $\sqrt{8/3}$-Liouville quantum gravity (LQG) surface (equivalently, a Brownian surface) decorated by SLE$_6$ in two different ways: 1. The triangulation, viewed as a curve-decorated metric measure space equipped with its graph distance, the counting measure on vertices, and a single percolation interface converges with respect to a version of the Gromov-Hausdorff topology. 2. There is a bijective encoding of the site-percolated triangulation by means of a two-dimensional random walk, and this walk converges to the correlated two-dimensional Brownian motion which encodes SLE$_6$-decorated $\sqrt{8/3}$-LQG via the mating-of-trees theorem of Duplantier-Miller-Sheffield (2014); this is sometimes called $\textit{peanosphere convergence}$. We prove that one in fact has $\textit{joint}$ convergence in both of these two senses simultaneously. We also improve the metric convergence result by showing that the map decorated by the full collection of percolation interfaces (rather than just a single interface) converges to $\sqrt{8/3}$-LQG decorated by CLE$_6$ in the metric space sense. This is the first work to prove simultaneous convergence of any random planar map model in the metric and peanosphere senses. Moreover, this work is an important step in an ongoing program to prove that random triangulations embedded into $\mathbb C$ via the so-called $\textit{Cardy embedding}$ converge to $\sqrt{8/3}$-LQG.

[1]  SLE6 and CLE6 from critical percolation , 2008 .

[2]  J. L. Gall,et al.  Brownian disks and the Brownian snake , 2017, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.

[3]  N. Curien,et al.  The Brownian Plane , 2012, 1204.5921.

[4]  Jason Miller,et al.  Confluence of geodesics in Liouville quantum gravity for γ ∈ ( 0 , 2 ) , 2019 .

[5]  Xin Sun,et al.  Weak LQG metrics and Liouville first passage percolation , 2019, Probability Theory and Related Fields.

[6]  Omer Angel,et al.  Percolations on random maps I: Half-plane models , 2013, 1301.5311.

[7]  Exploration trees and conformal loop ensembles , 2006, math/0609167.

[8]  D. Jutras Quebec. , 1907 .

[9]  S. Sheffield Quantum gravity and inventory accumulation , 2011, 1108.2241.

[10]  Scott Sheffield,et al.  Liouville quantum gravity and the Brownian map II: Geodesics and continuity of the embedding , 2016, The Annals of Probability.

[11]  Jian Ding,et al.  Tightness of Liouville first passage percolation for γ ∈ ( 0 , 2 ) $\gamma \in (0,2)$ , 2019, Publications mathématiques de l'IHÉS.

[12]  S. Sheffield,et al.  Imaginary geometry III: reversibility of SLE_\kappa\ for \kappa \in (4,8) , 2012, 1201.1498.

[13]  V. Vargas,et al.  Liouville Quantum Gravity on the Riemann Sphere , 2014, Communications in Mathematical Physics.

[14]  S. Sheffield Conformal weldings of random surfaces: SLE and the quantum gravity zipper , 2010, 1012.4797.

[15]  Jason Miller,et al.  Local metrics of the Gaussian free field , 2019, Annales de l'Institut Fourier.

[16]  C. Abraham Rescaled bipartite planar maps converge to the Brownian map , 2013, 1312.5959.

[17]  S. Sheffield,et al.  Imaginary geometry II: Reversibility of SLEκ(ρ1;ρ2) for κ∈(0,4). , 2016 .

[18]  S. Smirnov Critical percolation in the plane: conformal invariance, Cardy's formula, scaling limits , 2001 .

[19]  Liouville Field Theory — A decade after the revolution , 2004, hep-th/0402009.

[20]  L. Richier Universal aspects of critical percolation on random half-planar maps , 2014, 1412.7696.

[21]  Cheng Mao,et al.  Scaling limits for the critical Fortuin–Kasteleyn model on a random planar map I: Cone times , 2015, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.

[22]  J. Kahane Sur le chaos multiplicatif , 1985 .

[23]  S. Evans On the Hausdorff dimension of Brownian cone points , 1985, Mathematical Proceedings of the Cambridge Philosophical Society.

[24]  S. Sheffield,et al.  The Tutte embedding of the mated-CRT map converges to Liouville quantum gravity , 2017, The Annals of Probability.

[25]  Scott Sheffield,et al.  Liouville quantum gravity and KPZ , 2008, 0808.1560.

[26]  Jérémie Bettinelli Scaling Limit of Random Planar Quadrangulations with a Boundary , 2011, 1111.7227.

[27]  Jean-Franccois Le Gall,et al.  Uniqueness and universality of the Brownian map , 2011, 1105.4842.

[28]  Gilles Schaeer,et al.  Bijective census and random generation of Eulerian planar maps with prescribed vertex degrees , 1997 .

[29]  S. Sheffield,et al.  Imaginary geometry I: interacting SLEs , 2012, 1201.1496.

[30]  Omer Angel,et al.  Classification of Half Planar Maps , 2013, 1303.6582.

[31]  Jason Miller,et al.  Convergence of percolation on uniform quadrangulations with boundary to SLE$_{6}$ on $\sqrt{8/3}$-Liouville quantum gravity , 2017, 1701.05175.

[32]  N. Holden,et al.  Joint scaling limit of a bipolar-oriented triangulation and its dual in the peanosphere sense , 2016, 1603.01194.

[33]  R. Mullin,et al.  On the Enumeration of Tree-Rooted Maps , 1967, Canadian Journal of Mathematics.

[34]  N. Holden,et al.  Natural parametrization of percolation interface and pivotal points , 2018, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.

[35]  S. Sheffield,et al.  Imaginary geometry IV: interior rays, whole-plane reversibility, and space-filling trees , 2013, 1302.4738.

[36]  Omer Angel Scaling of Percolation on Infinite Planar Maps, I , 2005, math/0501006.

[37]  A. Dembo,et al.  Liouville quantum gravity and the Brownian map I: The QLE(8/3,0) metric , 2015, 1507.00719.

[38]  Jason Miller,et al.  Convergence of the free Boltzmann quadrangulation with simple boundary to the Brownian disk , 2017, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.

[39]  G. Lawler,et al.  Minkowski content and natural parameterization for the Schramm–Loewner evolution , 2012, 1211.4146.

[40]  Jason Miller,et al.  Scaling limit of the uniform infinite half-plane quadrangulation in the Gromov-Hausdorff-Prokhorov-uniform topology , 2016, 1608.00954.

[41]  V. Wachtel,et al.  Invariance principles for random walks in cones , 2015, Stochastic Processes and their Applications.

[42]  Egon Willighagen Cluster , 2019, Encyclopedic Dictionary of Archaeology.

[43]  Jason Miller,et al.  Existence and uniqueness of the Liouville quantum gravity metric for $$\gamma \in (0,2)$$ γ ∈ ( 0 , , 2019, Inventiones mathematicae.

[44]  S. Sheffield,et al.  Liouville quantum gravity as a mating of trees , 2014, 1409.7055.

[45]  J. L. Gall,et al.  Quadrangulations with no pendant vertices , 2013, 1307.7524.

[46]  Xin Sun,et al.  Scaling limits for the critical Fortuin-Kastelyn model on a random planar map II: local estimates and empty reduced word exponent , 2015, 1505.03375.

[47]  S. Sheffield,et al.  Liouville quantum gravity spheres as matings of finite-diameter trees , 2015, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.

[48]  W. T. Tutte On the enumeration of planar maps , 1968 .

[49]  S. Sheffield,et al.  Liouville quantum gravity and the Brownian map III: the conformal structure is determined , 2016, Probability Theory and Related Fields.

[50]  Scott Sheffield,et al.  Quantum Loewner Evolution , 2013, 1312.5745.

[51]  Avelio Sep'ulveda,et al.  Liouville dynamical percolation , 2019, Probability Theory and Related Fields.

[52]  D. Wilson,et al.  Bipolar orientations on planar maps and SLE$_{12}$ , 2015, 1511.04068.

[53]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[54]  John Cardy Critical percolation in finite geometries , 1992 .

[55]  Omer Angel Growth and percolation on the uniform infinite planar triangulation , 2002 .

[56]  Xin Sun,et al.  Scaling limits for the critical Fortuin-Kastelyn model on a random planar map III: finite volume case , 2015, 1510.06346.

[57]  Jason Miller,et al.  Conformal covariance of the Liouville quantum gravity metric for γ∈(0,2) , 2019, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.

[58]  G. Lawler,et al.  SLE curves and natural parametrization , 2010, 1006.4936.

[59]  N. Holden,et al.  Convergence of uniform triangulations under the Cardy embedding , 2019, Acta Mathematica.

[60]  O. Schramm,et al.  A contour line of the continuum Gaussian free field , 2010, 1008.2447.

[61]  Xin Sun SCALING LIMITS FOR THE CRITICAL FORTUIN-KASTELEYN MODEL ON A RANDOM PLANAR MAP II: LOCAL ESTIMATES AND EMPTY REDUCED WORD EXPONENT , 2018 .

[62]  Vincent Vargas,et al.  Gaussian multiplicative chaos and applications: A review , 2013, 1305.6221.

[63]  Jason Miller,et al.  Intersections of SLE Paths: the double and cut point dimension of SLE , 2013, 1303.4725.

[64]  Emmanuel Jacob,et al.  The scaling limit of uniform random plane maps, via the Ambjørn-Budd bijection , 2013, 1312.5842.

[65]  G. Ray,et al.  Classification of scaling limits of uniform quadrangulations with a boundary , 2016, The Annals of Probability.

[66]  O. Bernardi,et al.  Percolation on Triangulations: A Bijective Path to Liouville Quantum Gravity , 2018, Memoirs of the American Mathematical Society.

[67]  B. M. Fulk MATH , 1992 .

[68]  Gr'egory Miermont,et al.  The Brownian map is the scaling limit of uniform random plane quadrangulations , 2011, 1104.1606.

[69]  Olivier Bernardi Bijective counting of Kreweras walks and loopless triangulations , 2007, J. Comb. Theory, Ser. A.

[70]  Jason Miller,et al.  Convergence of the self-avoiding walk on random quadrangulations to SLE$_{8/3}$ on $\sqrt{8/3}$-Liouville quantum gravity , 2016, Annales Scientifiques de l'École Normale Supérieure.

[71]  G. Lawler,et al.  Minkowski content of Brownian cut points , 2018, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.

[72]  Elton P. Hsu,et al.  THE SCALING LIMIT OF RANDOM SIMPLE TRIANGULATIONS AND RANDOM SIMPLE QUADRANGULATIONS BY , 2017 .

[73]  Jason Miller,et al.  Chordal SLE$_6$ explorations of a quantum disk , 2017, 1701.05172.

[74]  D. Wilson,et al.  Active Spanning Trees with Bending Energy on Planar Maps and SLE-Decorated Liouville Quantum Gravity for $${\kappa > 8}$$κ>8 , 2016, 1603.09722.

[75]  Gregory F. Lawler,et al.  Conformally Invariant Processes in the Plane , 2005 .

[76]  O. Schramm,et al.  Pivotal, cluster, and interface measures for critical planar percolation , 2010, 1008.1378.

[77]  Jason Miller,et al.  An almost sure KPZ relation for SLE and Brownian motion , 2015, The Annals of Probability.

[78]  Sheffield , 1906, British medical journal.

[79]  Olivier Bernardi,et al.  Parenthesis , 2020, X—The Problem of the Negro as a Problem for Thought.

[80]  G. Miermont,et al.  Compact Brownian surfaces I: Brownian disks , 2015, 1507.08776.

[81]  Oded Schramm,et al.  Scaling limits of loop-erased random walks and uniform spanning trees , 1999, math/9904022.

[82]  Almut Burchard,et al.  Holder Regularity and Dimension Bounds for Random Curves , 1998 .

[83]  Philippe Di Francesco,et al.  Planar Maps as Labeled Mobiles , 2004, Electron. J. Comb..

[84]  R. Abraham,et al.  A note on the Gromov-Hausdorff-Prokhorov distance between (locally) compact metric measure spaces , 2012, 1202.5464.

[85]  S. Sheffield Gaussian free fields for mathematicians , 2003, math/0312099.