Joint scaling limit of site percolation on random triangulations in the metric and peanosphere sense
暂无分享,去创建一个
Nina Holden | Xin Sun | Ewain Gwynne | N. Holden | Xin Sun | Ewain Gwynne
[1] SLE6 and CLE6 from critical percolation , 2008 .
[2] J. L. Gall,et al. Brownian disks and the Brownian snake , 2017, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.
[3] N. Curien,et al. The Brownian Plane , 2012, 1204.5921.
[4] Jason Miller,et al. Confluence of geodesics in Liouville quantum gravity for γ ∈ ( 0 , 2 ) , 2019 .
[5] Xin Sun,et al. Weak LQG metrics and Liouville first passage percolation , 2019, Probability Theory and Related Fields.
[6] Omer Angel,et al. Percolations on random maps I: Half-plane models , 2013, 1301.5311.
[7] Exploration trees and conformal loop ensembles , 2006, math/0609167.
[8] D. Jutras. Quebec. , 1907 .
[9] S. Sheffield. Quantum gravity and inventory accumulation , 2011, 1108.2241.
[10] Scott Sheffield,et al. Liouville quantum gravity and the Brownian map II: Geodesics and continuity of the embedding , 2016, The Annals of Probability.
[11] Jian Ding,et al. Tightness of Liouville first passage percolation for γ ∈ ( 0 , 2 ) $\gamma \in (0,2)$ , 2019, Publications mathématiques de l'IHÉS.
[12] S. Sheffield,et al. Imaginary geometry III: reversibility of SLE_\kappa\ for \kappa \in (4,8) , 2012, 1201.1498.
[13] V. Vargas,et al. Liouville Quantum Gravity on the Riemann Sphere , 2014, Communications in Mathematical Physics.
[14] S. Sheffield. Conformal weldings of random surfaces: SLE and the quantum gravity zipper , 2010, 1012.4797.
[15] Jason Miller,et al. Local metrics of the Gaussian free field , 2019, Annales de l'Institut Fourier.
[16] C. Abraham. Rescaled bipartite planar maps converge to the Brownian map , 2013, 1312.5959.
[17] S. Sheffield,et al. Imaginary geometry II: Reversibility of SLEκ(ρ1;ρ2) for κ∈(0,4). , 2016 .
[18] S. Smirnov. Critical percolation in the plane: conformal invariance, Cardy's formula, scaling limits , 2001 .
[19] Liouville Field Theory — A decade after the revolution , 2004, hep-th/0402009.
[20] L. Richier. Universal aspects of critical percolation on random half-planar maps , 2014, 1412.7696.
[21] Cheng Mao,et al. Scaling limits for the critical Fortuin–Kasteleyn model on a random planar map I: Cone times , 2015, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.
[22] J. Kahane. Sur le chaos multiplicatif , 1985 .
[23] S. Evans. On the Hausdorff dimension of Brownian cone points , 1985, Mathematical Proceedings of the Cambridge Philosophical Society.
[24] S. Sheffield,et al. The Tutte embedding of the mated-CRT map converges to Liouville quantum gravity , 2017, The Annals of Probability.
[25] Scott Sheffield,et al. Liouville quantum gravity and KPZ , 2008, 0808.1560.
[26] Jérémie Bettinelli. Scaling Limit of Random Planar Quadrangulations with a Boundary , 2011, 1111.7227.
[27] Jean-Franccois Le Gall,et al. Uniqueness and universality of the Brownian map , 2011, 1105.4842.
[28] Gilles Schaeer,et al. Bijective census and random generation of Eulerian planar maps with prescribed vertex degrees , 1997 .
[29] S. Sheffield,et al. Imaginary geometry I: interacting SLEs , 2012, 1201.1496.
[30] Omer Angel,et al. Classification of Half Planar Maps , 2013, 1303.6582.
[31] Jason Miller,et al. Convergence of percolation on uniform quadrangulations with boundary to SLE$_{6}$ on $\sqrt{8/3}$-Liouville quantum gravity , 2017, 1701.05175.
[32] N. Holden,et al. Joint scaling limit of a bipolar-oriented triangulation and its dual in the peanosphere sense , 2016, 1603.01194.
[33] R. Mullin,et al. On the Enumeration of Tree-Rooted Maps , 1967, Canadian Journal of Mathematics.
[34] N. Holden,et al. Natural parametrization of percolation interface and pivotal points , 2018, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.
[35] S. Sheffield,et al. Imaginary geometry IV: interior rays, whole-plane reversibility, and space-filling trees , 2013, 1302.4738.
[36] Omer Angel. Scaling of Percolation on Infinite Planar Maps, I , 2005, math/0501006.
[37] A. Dembo,et al. Liouville quantum gravity and the Brownian map I: The QLE(8/3,0) metric , 2015, 1507.00719.
[38] Jason Miller,et al. Convergence of the free Boltzmann quadrangulation with simple boundary to the Brownian disk , 2017, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.
[39] G. Lawler,et al. Minkowski content and natural parameterization for the Schramm–Loewner evolution , 2012, 1211.4146.
[40] Jason Miller,et al. Scaling limit of the uniform infinite half-plane quadrangulation in the Gromov-Hausdorff-Prokhorov-uniform topology , 2016, 1608.00954.
[41] V. Wachtel,et al. Invariance principles for random walks in cones , 2015, Stochastic Processes and their Applications.
[42] Egon Willighagen. Cluster , 2019, Encyclopedic Dictionary of Archaeology.
[43] Jason Miller,et al. Existence and uniqueness of the Liouville quantum gravity metric for $$\gamma \in (0,2)$$ γ ∈ ( 0 , , 2019, Inventiones mathematicae.
[44] S. Sheffield,et al. Liouville quantum gravity as a mating of trees , 2014, 1409.7055.
[45] J. L. Gall,et al. Quadrangulations with no pendant vertices , 2013, 1307.7524.
[46] Xin Sun,et al. Scaling limits for the critical Fortuin-Kastelyn model on a random planar map II: local estimates and empty reduced word exponent , 2015, 1505.03375.
[47] S. Sheffield,et al. Liouville quantum gravity spheres as matings of finite-diameter trees , 2015, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.
[48] W. T. Tutte. On the enumeration of planar maps , 1968 .
[49] S. Sheffield,et al. Liouville quantum gravity and the Brownian map III: the conformal structure is determined , 2016, Probability Theory and Related Fields.
[50] Scott Sheffield,et al. Quantum Loewner Evolution , 2013, 1312.5745.
[51] Avelio Sep'ulveda,et al. Liouville dynamical percolation , 2019, Probability Theory and Related Fields.
[52] D. Wilson,et al. Bipolar orientations on planar maps and SLE$_{12}$ , 2015, 1511.04068.
[53] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[54] John Cardy. Critical percolation in finite geometries , 1992 .
[55] Omer Angel. Growth and percolation on the uniform infinite planar triangulation , 2002 .
[56] Xin Sun,et al. Scaling limits for the critical Fortuin-Kastelyn model on a random planar map III: finite volume case , 2015, 1510.06346.
[57] Jason Miller,et al. Conformal covariance of the Liouville quantum gravity metric for γ∈(0,2) , 2019, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.
[58] G. Lawler,et al. SLE curves and natural parametrization , 2010, 1006.4936.
[59] N. Holden,et al. Convergence of uniform triangulations under the Cardy embedding , 2019, Acta Mathematica.
[60] O. Schramm,et al. A contour line of the continuum Gaussian free field , 2010, 1008.2447.
[61] Xin Sun. SCALING LIMITS FOR THE CRITICAL FORTUIN-KASTELEYN MODEL ON A RANDOM PLANAR MAP II: LOCAL ESTIMATES AND EMPTY REDUCED WORD EXPONENT , 2018 .
[62] Vincent Vargas,et al. Gaussian multiplicative chaos and applications: A review , 2013, 1305.6221.
[63] Jason Miller,et al. Intersections of SLE Paths: the double and cut point dimension of SLE , 2013, 1303.4725.
[64] Emmanuel Jacob,et al. The scaling limit of uniform random plane maps, via the Ambjørn-Budd bijection , 2013, 1312.5842.
[65] G. Ray,et al. Classification of scaling limits of uniform quadrangulations with a boundary , 2016, The Annals of Probability.
[66] O. Bernardi,et al. Percolation on Triangulations: A Bijective Path to Liouville Quantum Gravity , 2018, Memoirs of the American Mathematical Society.
[67] B. M. Fulk. MATH , 1992 .
[68] Gr'egory Miermont,et al. The Brownian map is the scaling limit of uniform random plane quadrangulations , 2011, 1104.1606.
[69] Olivier Bernardi. Bijective counting of Kreweras walks and loopless triangulations , 2007, J. Comb. Theory, Ser. A.
[70] Jason Miller,et al. Convergence of the self-avoiding walk on random quadrangulations to SLE$_{8/3}$ on $\sqrt{8/3}$-Liouville quantum gravity , 2016, Annales Scientifiques de l'École Normale Supérieure.
[71] G. Lawler,et al. Minkowski content of Brownian cut points , 2018, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.
[72] Elton P. Hsu,et al. THE SCALING LIMIT OF RANDOM SIMPLE TRIANGULATIONS AND RANDOM SIMPLE QUADRANGULATIONS BY , 2017 .
[73] Jason Miller,et al. Chordal SLE$_6$ explorations of a quantum disk , 2017, 1701.05172.
[74] D. Wilson,et al. Active Spanning Trees with Bending Energy on Planar Maps and SLE-Decorated Liouville Quantum Gravity for $${\kappa > 8}$$κ>8 , 2016, 1603.09722.
[75] Gregory F. Lawler,et al. Conformally Invariant Processes in the Plane , 2005 .
[76] O. Schramm,et al. Pivotal, cluster, and interface measures for critical planar percolation , 2010, 1008.1378.
[77] Jason Miller,et al. An almost sure KPZ relation for SLE and Brownian motion , 2015, The Annals of Probability.
[78] Sheffield , 1906, British medical journal.
[79] Olivier Bernardi,et al. Parenthesis , 2020, X—The Problem of the Negro as a Problem for Thought.
[80] G. Miermont,et al. Compact Brownian surfaces I: Brownian disks , 2015, 1507.08776.
[81] Oded Schramm,et al. Scaling limits of loop-erased random walks and uniform spanning trees , 1999, math/9904022.
[82] Almut Burchard,et al. Holder Regularity and Dimension Bounds for Random Curves , 1998 .
[83] Philippe Di Francesco,et al. Planar Maps as Labeled Mobiles , 2004, Electron. J. Comb..
[84] R. Abraham,et al. A note on the Gromov-Hausdorff-Prokhorov distance between (locally) compact metric measure spaces , 2012, 1202.5464.
[85] S. Sheffield. Gaussian free fields for mathematicians , 2003, math/0312099.