Measurement of absolute myocardial blood flow with H215O and dynamic positron-emission tomography. Strategy for quantification in relation to the partial-volume effect.

An in vivo technique was developed for measuring the absolute myocardial blood flow with H215O and dynamic positron-emission tomography. This technique was based on a new model involving the concept of the tissue fraction, which was defined as the fraction of the tissue mass in the volume of the region of interest. The myocardium was imaged dynamically by positron-emission tomography, starting at the time of intravenous bolus injection of H215O. The arterial input function was measured continuously with a beta-ray detector. A separate image after C15O inhalation was also obtained for correction of the H215O radioactivity in the blood. The absolute myocardial blood flow and the tissue fraction were calculated for 15 subjects with a kinetic technique under region-of-interest analysis. These results seem consistent with their coronary angiographic findings. The mean value of the measured absolute myocardial blood flows in normal subjects was 0.95 +/- 0.09 ml/min/g. This technique detected a diffuse decrease of myocardial blood flow in patients with triple-vessel disease.

[1]  I. Kanno,et al.  Error Analysis of a Quantitative Cerebral Blood Flow Measurement Using H215O Autoradiography and Positron Emission Tomography, with Respect to the Dispersion of the Input Function , 1986, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[2]  M E Phelps,et al.  Measurements of regional tissue and blood-pool radiotracer concentrations from serial tomographic images of the heart. , 1983, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[3]  B. Sobel,et al.  Characterization of the functional significance of subcritical coronary stenoses with H(2)15O and positron-emission tomography. , 1985, Circulation.

[4]  F. Shishido,et al.  [Studies on the direct synthesis of [O-15]-H2O]. , 1986, Kaku igaku. The Japanese journal of nuclear medicine.

[5]  I Kanno,et al.  Design and evaluation of a positron emission tomograph: HEADTOME III. , 1985, Journal of computer assisted tomography.

[6]  I Kanno,et al.  Two Methods for Calculating Regional Cerebral Blood Flow from Emission Computed Tomography of Inert Gas Concentrations , 1979, Journal of computer assisted tomography.

[7]  I Kanno,et al.  Deadtime correction method using random coincidence for PET. , 1986, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[8]  Iwao Kanno,et al.  Measurement of Cerebral Blood Flow Using Bolus Inhalation of C15O2 and Positron Emission Tomography: Description of the Method and its Comparison with the C15O2 Continuous Inhalation Method , 1984, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[9]  E. Hoffman,et al.  Quantitative measurement of myocardial blood flow with oxygen-15 water and positron computed tomography: an assessment of potential and problems. , 1985, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[10]  M. Mintun,et al.  Brain blood flow measured with intravenous H2(15)O. II. Implementation and validation. , 1983, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[11]  G T Gullberg,et al.  Quantitative potentials of dynamic emission computed tomography. , 1978, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[12]  F Shishido,et al.  A System for Cerebral Blood Flow Measurement Using an H215O Autoradiographic Method and Positron Emission Tomography , 1987, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[13]  M E Phelps,et al.  In vivo quantitation of regional myocardial blood flow by positron-emission computed tomography. , 1981, Circulation.

[14]  E. J. Hoffman,et al.  Quantitative Measurement of Local Cerebral Blood Flow in Humans by Positron Computed Tomography and 15O-Water , 1983, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[15]  M. Raichle,et al.  Brain blood flow measured with intravenous H2(15)O. I. Theory and error analysis. , 1983, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[16]  D. Turton,et al.  Validation of quantitation of regional myocardial blood flow in vivo with 11C-labeled human albumin microspheres and positron emission tomography. , 1984, Circulation.

[17]  E. Hoffman,et al.  Noninvasive assessment of coronary stenoses by myocardial imaging during pharmacologic coronary vasodilation. VI. Detection of coronary artery disease in human beings with intravenous N-13 ammonia and positron computed tomography. , 1982, The American journal of cardiology.

[18]  J. Kirk,et al.  A rapid titrimetric method for determining the water content of human blood. , 1953, Science.

[19]  M. Raichle,et al.  What is the Correct Value for the Brain-Blood Partition Coefficient for Water? , 1985, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.