Decomposition of Multiple Coverings into More Parts
暂无分享,去创建一个
Jean Cardinal | Stefan Langerman | Greg Aloupis | David Orden | Pedro Ramos | Sébastien Collette | S. Langerman | P. Ramos | G. Aloupis | J. Cardinal | Sébastien Collette | David Orden
[1] N. S. Barnett,et al. Private communication , 1969 .
[2] J. Pach. Decomposition of multiple packing and covering , 1980 .
[3] János Pach,et al. Covering the plane with convex polygons , 1986, Discret. Comput. Geom..
[4] J. Pach,et al. Decomposition problems for multiple coverings with unit balls, manuscript. , 1988 .
[5] Dana Ron,et al. Conflict-Free Colorings of Simple Geometric Regions with Applications to Frequency Assignment in Cellular Networks , 2003, SIAM J. Comput..
[6] János Pach,et al. Indecomposable Coverings , 2005, Canadian Mathematical Bulletin.
[7] János Pach,et al. Research problems in discrete geometry , 2005 .
[8] Prosenjit Bose,et al. On properties of higher-order Delaunay graphs with applications , 2005, EuroCG.
[9] Suresh Venkatasubramanian,et al. Restricted strip covering and the sensor cover problem , 2007, SODA '07.
[10] Gábor Tardos,et al. Multiple Coverings of the Plane with Triangles , 2007, Discret. Comput. Geom..
[11] János Pach,et al. Decomposition of multiple coverings into many parts , 2007, SCG '07.
[12] Mark de Berg,et al. Fault-Tolerant Conflict-Free Coloring , 2008, CCCG.
[13] Matt Gibson,et al. Decomposing Coverings and the Planar Sensor Cover Problem , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.
[14] Márton Elekes,et al. On splitting infinite-fold covers , 2009, 0911.2774.
[15] Jean Cardinal,et al. Coloring Geometric Range Spaces , 2009, Discret. Comput. Geom..
[16] Dömötör Pálvölgyi,et al. Indecomposable Coverings with Concave Polygons , 2010, Discret. Comput. Geom..
[17] Géza Tóth,et al. Convex Polygons are Cover-Decomposable , 2010, Discret. Comput. Geom..