Review of advanced radiator technologies for spacecraft power systems and space thermal control

A two-part overview of progress in space radiator technologies is presented. The first part reviews and compares the innovative heat-rejection system concepts proposed during the past decade, some of which have been developed to the breadboard demonstration stage. Included are space-constructable radiators with heat pipes, variable-surface-area radiators, rotating solid radiators, moving-belt radiators, rotating film radiators, liquid droplet radiators, Curie point radiators, and rotating bubble-membrane radiators. The second part summarizes a multielement project including focused hardware development under the Civil Space Technology Initiative (CSTI) High Capacity Power program carried out by the NASA Lewis Research Center and its contractors to develop lightweight space radiators in support of Space Exploration Initiative (SEI) power systems technology.

[1]  Albert J. Juhasz,et al.  Design considerations for space radiators based on the liquid sheet (LSR) concept , 1991 .

[2]  I. Chow,et al.  Fluid recirculation, deployment and retraction of an expandable pulse power radiator , 1986 .

[3]  T. Mahefkey Military spacecraft thermal management - The evolving requirements and challenges , 1982 .

[4]  Richard F. Brown,et al.  Space Station heat pipe advanced radiator element (SHARE) flight test results and analysis , 1990 .

[5]  Walter Apley,et al.  Rotating solid radiative coolant system for space nuclear reactors , 1988 .

[6]  Albert J. Juhasz,et al.  Development of Lightweight Radiators for Lunar Based Power Systems , 1994 .

[7]  A. J. Juhasz,et al.  Analysis of closed cycle megawatt class space power systems with nuclear reactor heat sources , 1987 .

[8]  W. E. Ellis The Space Station active thermal control technical challenge , 1989 .

[9]  D. G. Elliott Rotary radiators for reduced space powerplant temperatures , 1985 .

[10]  Eric Gustafson,et al.  Solar dynamic heat rejection technology. Task 1: System concept development , 1987 .

[11]  A. Hertzberg,et al.  Liquid Droplet Radiators for Heat Rejection in Space , 1981 .

[12]  J. A. Oren Flexible radiator system , 1982 .

[13]  Henry W. Brandhorst,et al.  Alternative power generation concepts for space , 1986 .

[14]  K. Alan White Moving Belt Radiator technology issues , 1988 .

[15]  W. P. Teagan,et al.  Preliminary evaluation of a liquid belt radiator for space applications , 1984 .

[16]  Sharon K. Rutledge,et al.  The effects of atomic oxygen on the thermal emittance of high temperature radiator surfaces , 1989 .

[17]  R. L. Cox,et al.  Flexible deployable-retractable space radiators , 1977 .

[18]  Albert J. Juhasz An overview of the Lewis Research Center CSTI thermal management program , 1991 .

[19]  Sharon K. Rutledge,et al.  Thermal emittance enhancement of graphite-copper composites for high temperature space based radiators , 1991 .

[20]  Z. I. Antoniak,et al.  Rotating bubble membrane radiator for space applications , 1986 .

[21]  G. P. Peterson,et al.  Thermal control systems for spacecraft instrumentation , 1987 .

[22]  Rengasamy Ponnappan,et al.  Conceptual design of an 1 m long 'roll out fin' type expandable space radiator , 1986 .

[23]  Donald L. Chubb,et al.  Liquid sheet radiator , 1987 .

[24]  E. Mahefkey,et al.  Low temperature expandable megawatt pulse power radiator , 1985 .

[25]  Mohamed S. El-Genk,et al.  Closed Brayton Cycle power system with a high temperature pellet bed reactor heat source for NEP applications , 1992 .

[26]  Ronald C. Cull,et al.  Enabling the space exploration initiative: NASA's exploration technology program in space power , 1991 .