A theoretical investigation of the nature of the π-H interaction in ethene–H2O, benzene–H2O, and benzene–(H2O)2

We have carried out a detailed investigation of the nature of the π-H interaction in the ethene–H2O, benzene–H2O, and benzene–(H2O)2 complexes using large basis sets (ranging from 6-31+G* to TZ2P++) and high levels of theory. The minimum geometries, and hence the vibrational frequencies, of all the complexes have been obtained at the second order Mo/ller–Plesset (MP2) level of theory. The binding energy of the ethene–H2O complex is only about 1 kcal/mol lower than that of the benzene–H2O complex. In the benzene–(H2O)2 complex, the interaction of benzene with the π-bonded water to that with the second water is nearly equivalent. In order to explain the above interesting facets of the interaction of water with benzene and ethene, the interaction energies were decomposed into the individual interaction energy components using the recently developed symmetry adapted perturbation theory (SAPT) program. The SAPT results indicate that the repulsive exchange energies play a crucial role in governing the energies ...

[1]  G. A. Jeffrey,et al.  An Introduction to Hydrogen Bonding , 1997 .

[2]  K. Szalewicz,et al.  Dispersion Energy in the Coupled Pair Approximation with Noniterative Inclusion of Single and Triple Excitations , 1995 .

[3]  J. D. Augspurger,et al.  Model study of the structures and stabilities of benzene-(H2O)2-12 complexes , 1993 .

[4]  K. Szalewicz,et al.  Symmetry-adapted perturbation theory calculation of the He-HF intermolecular potential energy surface , 1993 .

[5]  Kwang S. Kim,et al.  NOVEL AMPHI-IONOPHORES , 1998 .

[6]  Charles Tanford,et al.  The Hydrophobic Effect: Formation of Micelles and Biological Membranes , 1991 .

[7]  Stanisl,et al.  Many‐body perturbation theory of electrostatic interactions between molecules: Comparison with full configuration interaction for four‐electron dimers , 1993 .

[8]  Robert Moszynski,et al.  Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes , 1994 .

[9]  V. Buch,et al.  Condensation and structure of amorphous ices: A computational study , 1990 .

[10]  Byung Jin Mhin,et al.  Ab initio studies of the water dimer using large basis sets: The structure and thermodynamic energies , 1992 .

[11]  P. Privalov,et al.  Stability of protein structure and hydrophobic interaction. , 1988, Advances in protein chemistry.

[12]  P. Jankowski,et al.  Ab initio potential energy surface and infrared spectra of H2-CO and D2-CO van der Waals complexes , 1998 .

[13]  P. Åstrand,et al.  NONEMPIRICAL INTERMOLECULAR POTENTIALS FOR UREA-WATER SYSTEMS , 1994 .

[14]  K. Jordan,et al.  OH stretch IR spectra of (H2O)3 and benzene-(H2O)3 , 1997 .

[15]  Roger Hayward,et al.  The Hydrogen Bond , 1960 .

[16]  E. A. Walters,et al.  Dissociation energy of the benzenewater van der Waals complex , 1995 .

[17]  Professor Dr. George A. Jeffrey,et al.  Hydrogen Bonding in Biological Structures , 1991, Springer Berlin Heidelberg.

[18]  Speed improvement of diffusion quantum Monte Carlo calculations on weakly bound clusters , 1998 .

[19]  K. Szalewicz,et al.  Many‐body theory of exchange effects in intermolecular interactions. Density matrix approach and applications to He–F−, He–HF, H2–HF, and Ar–H2 dimers , 1994 .

[20]  Stanisl,et al.  Many‐body symmetry‐adapted perturbation theory of intermolecular interactions. H2O and HF dimers , 1991 .

[21]  Roger E Bumgarner,et al.  Benzene Forms Hydrogen Bonds with Water , 1992, Science.

[22]  A. van der Avoird,et al.  Ab initio potential energy surface and near‐infrared spectrum of the He–C2H2 complex , 1995 .

[23]  T. Crawford,et al.  The balance between theoretical method and basis set quality: A systematic study of equilibrium geometries, dipole moments, harmonic vibrational frequencies, and infrared intensities , 1993 .

[24]  Donald J. Cram The Design of Molecular Hosts, Guests, and Their Complexes (Nobel Lecture)† , 1988 .

[25]  S. Scheiner Molecular Interactions. From van der Waals to Strongly Bound Complexes , 1997 .

[26]  K. Szalewicz,et al.  Møller–Plesset expansion of the dispersion energy in the ring approximation , 1993 .

[27]  K. P. Lawley,et al.  Ab initio methods in quantum chemistry , 1987 .

[28]  S. J. Cole,et al.  A theoretical study of the water dimer interaction , 1988 .

[29]  Sl,et al.  Many‐body theory of intermolecular induction interactions , 1994 .

[30]  E. Bernstein,et al.  Normal Mode Analysis of van der Waals Vibrations , 1991 .

[31]  K. Jordan,et al.  Resonant ion-dip infrared spectroscopy of the S4 and D2d water octamers in benzene-(water)8 and benzene2-(water)8 , 1998 .

[32]  Hans Peter Lüthi,et al.  The MP2 limit correction applied to coupled cluster calculations of the electronic dissociation energies of the hydrogen fluoride and water dimers , 1999 .

[33]  J. D. Bene Molecular orbital theory of the hydrogen bond. PI electrons as proton acceptors , 1974 .

[34]  T. Zwier,et al.  Multiphoton ionization studies of clusters of immiscible liquids. II. C6H6–(H2O)n, n=3–8 and (C6H6)2–(H2O)1,2 , 1992 .

[35]  F. Weinhold,et al.  Natural population analysis , 1985 .

[36]  J. Sorenson,et al.  The C6H6-(H2O)2 complex: theoretical predictions of the structure, energetics, and tunneling dynamics , 1997 .

[37]  Timothy S. Zwier,et al.  Hydrogen-bond swapping in the benzene-water complex. A model study of the interaction potential , 1992 .

[38]  K. Szalewicz,et al.  Effects of monomer geometry and basis set saturation on computed depth of water dimer potential , 1996 .

[39]  Douglas Philp,et al.  Self‐Assembly in Natural and Unnatural Systems , 1996 .

[40]  K. I. Peterson,et al.  Water–hydrocarbon interactions: Structure and internal rotation of the water–ethylene complex , 1986 .

[41]  Donald G. Truhlar,et al.  Systematic study of basis set superposition errors in the calculated interaction energy of two HF molecules , 1985 .

[42]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[43]  J. Menapace,et al.  Hydrogen bonded and non‐hydrogen bonded van der Waals clusters: Comparison between clusters of pyrazine, pyrimidine, and benzene with various solvents , 1986 .

[44]  K. Szalewicz,et al.  Pair potential for water from symmetry-adapted perturbation theory , 1997 .

[45]  A. Engdahl,et al.  A matrix-isolation study of the ethylene—water interaction , 1985 .

[46]  J. Devlin,et al.  Interaction of Acetylene, Ethylene, and Benzene with Ice Surfaces , 1994 .

[47]  P. Felker,et al.  Nonlinear Raman spectroscopy of intermolecular vibrations in benzene-(water)n clusters , 1995 .

[48]  P. Wormer,et al.  Theoretical study of the OH−(H2O)2 system: Nature and importance of three-body interactions , 1998 .

[49]  Kwang S. Kim,et al.  Ab initio study of the complexation of benzene with ammonium cations , 1995 .

[50]  Kwang Soo Kim,et al.  Quantum-mechanical probabilistic structure of the water dimer with an excess electron , 1999 .

[51]  Sang Joo Lee,et al.  Benzene-hydrogen halide interactions: Theoretical studies of binding energies, vibrational frequencies, and equilibrium structures , 1998 .

[52]  A. Hagler,et al.  The role of nonbond and charge flux in hydrogen bond interactions. The effect on structural changes and spectral shifts in water dimer , 1992 .

[53]  Marie-Pierre Gaigeot,et al.  Quantum Effects in the Threshold Photoionization and Energetics of the Benzene−H2O and Benzene−D2O Complexes: Experiment and Simulation , 1998 .

[54]  Timothy S. Zwier,et al.  Multiphoton ionization studies of clusters of immiscible liquids. I. C6H6–(H2O)n, n=1,2 , 1992 .

[55]  Jin Yong Lee,et al.  Quantum mechanical probabilistic structure of the benzene-water complex , 1997 .

[56]  J. Bentley Behavior of Electron Density Functions in Molecular Interactions , 1998 .

[57]  Betsy M. Rice,et al.  Intermolecular potential of carbon dioxide dimer from symmetry-adapted perturbation theory , 1999 .

[58]  K. Szalewicz,et al.  Many‐body theory of exchange effects in intermolecular interactions. Second‐quantization approach and comparison with full configuration interaction results , 1994 .

[59]  R. L. Kuczkowski,et al.  Microwave spectra of C2H4⋅H2O and isotopomers , 1993 .

[60]  Steve Scheiner,et al.  Hydrogen Bonding: A Theoretical Perspective , 1997 .

[61]  H. S. Gutowsky,et al.  Low-J rotational spectra, internal rotation, and structures of several benzene-water dimers , 1993 .

[62]  E. Davidson,et al.  An analysis of the hydrogen bond in ice , 1990 .

[63]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[64]  Timothy S. Zwier,et al.  Resonant ion-dip infrared spectroscopy of benzene–H2O and benzene–HOD , 1995 .

[65]  Christopher A. Hunter,et al.  Meldola Lecture. The role of aromatic interactions in molecular recognition , 1994 .

[66]  Uwe Koch,et al.  Conformational dependence of the molecular charge distribution and its influence on intermolecular interactions , 1996 .

[67]  B. Rice,et al.  Investigation of the CH3CN-CO2 Potential Energy Surface (PES) Using Symmetry-Adapted Perturbation Theory (SAPT) , 1998 .

[68]  K. Jordan,et al.  Theoretical Characterization of the Structures and Vibrational Spectra of Benzene−(H2O)n (n = 1−3) Clusters , 1996 .

[69]  P. Wormer,et al.  Ab initio potential energy surface, infrared spectrum, and second virial coefficient of the He–CO complex , 1995 .

[70]  P. Wormer,et al.  Intermolecular potential and rovibrational levels of Ar-HF from symmetry-adapted perturbation theory , 1995 .

[71]  C. Strader,et al.  Amino–aromatic interaction between histidine 197 of the neurokinin-1 receptor and CP 96345 , 1993, Nature.

[72]  A. Engdahl,et al.  A matrix isolation study of the benzene−water interaction , 1985 .

[73]  G. Herzberg,et al.  Molecular Spectra and Molecular Structure , 1992 .

[74]  P. Jankowski,et al.  Symmetry‐adapted perturbation theory calculation of the intra‐atomic correlation contribution to the short‐range repulsion of helium atoms , 1990 .