A Systematic Review on the Role of Mycorrhiza in Soil Genesis Using Scientometrics Analysis

[1]  N. Al-Suhaibani,et al.  Effects of arbuscular mycorrhizal fungi on the growth of two turfgrasses grown under greenhouse conditions , 2018 .

[2]  J. Balogh,et al.  Rhizospheric, mycorrhizal and heterotrophic respiration in dry grasslands , 2018 .

[3]  Giuseppe De Mastro,et al.  Remediation of a heavy metals contaminated soil using mycorrhized and non‐mycorrhized Helichrysum italicum (Roth) Don , 2018 .

[4]  Silvina García,et al.  Long-term phosphorus fertilization effects on arbuscular mycorrhizal fungal diversity in Uruguayan grasses , 2017 .

[5]  Massimo Aria,et al.  bibliometrix: An R-tool for comprehensive science mapping analysis , 2017, J. Informetrics.

[6]  F. Rey,et al.  Does arbuscular and ectomycorrhizal fungal inoculation improve soil aggregate stability? A case study on three tropical species growing in ultramafic Ferralsols , 2017 .

[7]  Riley O. Mummah,et al.  Living cover crops have immediate impacts on soil microbial community structure and function , 2017, Journal of Soil and Water Conservation.

[8]  A. Varma,et al.  Evaluation of comparative effects of arbuscular mycorrhiza (Rhizophagus intraradices) and endophyte (Piriformospora indica) association with finger millet (Eleusine coracana) under drought stress , 2017 .

[9]  A. Fabra,et al.  Effect of previous cropping of rapeseed (Brassica napus L.) on soybean (Glycine max) root mycorrhization, nodulation, and plant growth , 2016 .

[10]  M. Coyne,et al.  Response of Arbuscular Mycorrhizal Fungi in Different Soil Tillage Systems to Long‐Term Swine Slurry Application , 2016 .

[11]  F. Raiesi,et al.  The significant contribution of mycorrhizal fungi and earthworms to maize protection and phytoremediation in Cd-polluted soils , 2014 .

[12]  P. Audet Arbuscular Mycorrhizal Fungi and Metal Phytoremediation , 2014 .

[13]  P. Audet Chapter 6 – Arbuscular Mycorrhizal Fungi and Metal Phytoremediation: Ecophysiological Complementarity in Relation to Environmental Stress , 2014 .

[14]  F. Graf,et al.  MYCORRHIZAL FUNGI PROTECT THE SOIL FROM WIND EROSION: A WIND TUNNEL STUDY , 2013 .

[15]  P. Olsson,et al.  Abundance of arbuscular mycorrhizal fungi in relation to soil salinity around Lake Urmia in northern Iran analyzed by use of lipid biomarkers and microscopy , 2013 .

[16]  M. Gryndler,et al.  Mycorrhizal hyphae as ecological niche for highly specialized hypersymbionts – or just soil free-riders? , 2013, Front. Plant Sci..

[17]  A. Shukla,et al.  Soil depth: an overriding factor for distribution of arbuscular mycorrhizal fungi , 2013 .

[18]  J. Beltrano,et al.  Effects of arbuscular mycorrhiza inoculation on plant growth, biological and physiological parameters and mineral nutrition in pepper grown under different salinity and p levels. , 2013 .

[19]  D. Khasa,et al.  The abundance and diversity of legume-nodulating rhizobia and arbuscular mycorrhizal fungal communities in soil samples from deforested and man-made forest systems in a semiarid Sahel region in Senegal , 2012 .

[20]  Fayuan Wang,et al.  Response of soil respiration under different mycorrhizal strategies to precipitation and temperature , 2012 .

[21]  K. Tawaraya,et al.  Arbuscular mycorrhizal colonization increases phosphorus uptake and growth of corn in a white clover living mulch system , 2012 .

[22]  Peng Wang,et al.  Arbuscular mycorrhiza, rhizospheric microbe populations and soil enzyme activities in citrus orchards under two types of no-tillage soil management , 2011 .

[23]  Neeraj,et al.  Organic amendments to soil inoculated arbuscular mycorrhizal fungi and Pseudomonas fluorescens treatments reduce the development of root-rot disease and enhance the yield of Phaseolus vulgaris L. , 2011 .

[24]  T. Frank,et al.  Soil sand content can alter effects of different taxa of mycorrhizal fungi on plant biomass production of grassland species , 2011, European journal of soil biology.

[25]  G. Sharma,et al.  Factors influencing soil CO2 efflux in a northeastern Indian oak forest and plantation. , 2010 .

[26]  I. Ortas,et al.  Growth response of maize plants (Zea mays L.) to wheat and lentil pre-cropping and to indigenous mycorrhizae in field soil , 2010 .

[27]  V. Estaún,et al.  Arbuscular mycorrhizal fungi associated with psammophilic vegetation in Mediterranean coastal sand dunes. , 2010 .

[28]  T. Tóth,et al.  Short communication. Effect of saline soil parameters on endomycorrhizal colonisation of dominant halophytes in four Hungarian sites , 2010 .

[29]  K. Ritz,et al.  Assessment of mycorrhizal colonisation and soil nutrients in unmanaged fire-impacted soils from two target restoration sites , 2010 .

[30]  I. Ortas Effect of mycorrhiza application on plant growth and nutrient uptake in cucumber production under field conditions , 2010 .

[31]  S. Salim,et al.  Application of mycorrhizae to ornamental horticultural crops: lisianthus (Eustoma grandiflorum) as a test case , 2010 .

[32]  P. Cornejo,et al.  ARBUSCULAR MYCORRHIZAE IN AGRICULTURAL AND FOREST ECOSYSTEMS IN CHILE , 2010 .

[33]  L. Lioussanne Review. The role of the arbuscular mycorrhiza-associated rhizobacteria in the biocontrol of soilborne phytopathogens , 2010 .

[34]  R. Azcón,et al.  EFFECTIVENESS OF THE APPLICATION OF ARBUSCULAR MYCORRHIZA FUNGI AND ORGANIC AMENDMENTS TO IMPROVE SOIL QUALITY AND PLANT PERFORMANCE UNDER STRESS CONDITIONS , 2010 .

[35]  P. Schröder,et al.  Arbuscular mycorrhizal association is beneficial for growth and detoxification of xenobiotics of barley under drought stress , 2010 .

[36]  J. Jansa,et al.  Environmental determinants of the arbuscular mycorrhizal fungal infectivity of Swiss agricultural soils , 2009 .

[37]  F. Rejali,et al.  Effects of mixed cropping, earthworms (Pheretima sp.), and arbuscular mycorrhizal fungi (Glomus mosseae) on plant yield, mycorrhizal colonization rate, soil microbial biomass, and nitrogenase activity of free-living rhizosphere bacteria , 2009 .

[38]  Matthew E Falagas,et al.  Comparison of PubMed, Scopus, Web of Science, and Google Scholar: strengths and weaknesses , 2007, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[39]  Y. Zou,et al.  Improved soil structure and citrus growth after inoculation with three arbuscular mycorrhizal fungi under drought stress , 2008 .

[40]  Sota Tanaka,et al.  Arbuscular mycorrhizal fungus (Glomus aggregatum) influences biotransformation of arsenic in the rhizosphere of sunflower (Helianthus annuus L.) , 2007 .

[41]  M. Heimann,et al.  The vulnerability of the carbon cycle in the 21st century: an assessment of carbon-climate-human interactions , 2004 .

[42]  R. Miller,et al.  Carbon cycling by arbuscular mycorrhizal fungi in soil-plant systems. , 2003, Trends in plant science.

[43]  M. Aubinet,et al.  Soil CO2 efflux measurements in a mixed forest: impact of chamber disturbances, spatial variability and seasonal evolution , 2000 .

[44]  G. Díaz,et al.  A mycorrhizal survey of plants growing on mine wastes in southeast Spain , 1993 .

[45]  W. F. Campbell,et al.  Effects of mycorrhizae on sorghum growth, photosynthesis, and stomatal conductance under drought conditions. , 1990 .

[46]  R. E. Koske,et al.  Glomus microaggregatum, a new species in the Endogonaceae , 1986 .

[47]  C. Walker,et al.  Glomus globiferum: a new species of Endogonaceae with a hyphal peridium , 1986 .

[48]  C. Walker,et al.  Taxonomic concepts in the Endogonaceae. III. The separation of Scutellospora gen. nov. from Gigaspora Gerd. and Trappe , 1986 .

[49]  George S. Smith,et al.  TWO NEW DIMORPHIC SPECIES IN THE ENDOGONACEAE: GLOMUS AMBISPORUM AND GLOMUS HETEROSPORUM , 1985 .

[50]  C. Walker,et al.  Glomus diaphanum: a new species in the Endogonaceae common in West Virginia , 1984 .

[51]  George S. Smith,et al.  Additional New and Unreported Species of Mycorrhizal Fungi (Endogonaceae) from Florida , 1982 .

[52]  T. Nicolson,et al.  Endogonaceous Mycorrhizal Endophytes in Florida , 1979 .