Evolving estimators of the pointwise Hölder exponent with Genetic Programming

The regularity of a signal can be numerically expressed using Holder exponents, which characterize the singular structures a signal contains. In particular, within the domains of image processing and image understanding, regularity-based analysis can be used to describe local image shape and appearance. However, estimating the Holder exponent is not a trivial task, and current methods tend to be computationally slow and complex. This work presents an approach to automatically synthesize estimators of the pointwise Holder exponent for digital images. This task is formulated as an optimization problem and Genetic Programming (GP) is used to search for operators that can approximate a traditional estimator, the oscillations method. Experimental results show that GP can generate estimators that achieve a low error and a high correlation with the ground truth estimation. Furthermore, most of the GP estimators are faster than traditional approaches, in some cases their runtime is orders of magnitude smaller. This result allowed us to implement a real-time estimation of the Holder exponent on a live video signal, the first such implementation in current literature. Moreover, the evolved estimators are used to generate local descriptors of salient image regions, a task for which a stable and robust matching is achieved, comparable with state-of-the-art methods. In conclusion, the evolved estimators produced by GP could help expand the application domain of Holder regularity within the fields of image analysis and signal processing.

[1]  Alejandro Hinojosa-Corona,et al.  A Genetic Programming Approach to Estimate Vegetation Cover in the Context of Soil Erosion Assessment , 2011 .

[2]  Leonardo Trujillo,et al.  Regularity based descriptor computed from local image oscillations. , 2007, Optics express.

[3]  Victor Ciesielski,et al.  Texture Segmentation by Genetic Programming , 2008, Evolutionary Computation.

[4]  Stefano Cagnon,et al.  Genetic and Evolutionary Computation for Image Processing and Analysis , 2008 .

[5]  Pierrick Legrand,et al.  Débruitage et interpolation par analyse de la régularité Hölderienne. Application à la modélisation du frottement pneumatique-chaussée , 2004 .

[6]  Gustavo Olague,et al.  Evolutionary learning of local descriptor operators for object recognition , 2009, GECCO.

[7]  John R. Koza,et al.  Automatic Creation of Human-Competitive Programs and Controllers by Means of Genetic Programming , 2000, Genetic Programming and Evolvable Machines.

[8]  Riccardo Poli,et al.  Foundations of Genetic Programming , 1999, Springer Berlin Heidelberg.

[9]  M. Lapidus,et al.  Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot , 2004 .

[10]  Maarten Keijzer,et al.  Scaled Symbolic Regression , 2004, Genetic Programming and Evolvable Machines.

[11]  S. Jaffard Wavelet Techniques in Multifractal Analysis , 2004 .

[12]  S. Mallat A wavelet tour of signal processing , 1998 .

[13]  David M. Clark,et al.  Genetic programming for finite algebras , 2008, GECCO '08.

[14]  Leonardo Trujillo,et al.  Automated Design of Image Operators that Detect Interest Points , 2008, Evolutionary Computation.

[15]  Bir Bhanu,et al.  Fingerprint classification based on learned features , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[16]  Leonardo Trujillo,et al.  The estimation of hölderian regularity using genetic programming , 2010, GECCO '10.

[17]  Mengjie Zhang,et al.  Overview of Object Detection and Image Analysis by Means of Genetic Programming Techniques , 2007, 2007 Frontiers in the Convergence of Bioscience and Information Technologies.

[18]  O. Barriere Synthèse et estimation de mouvements browniens multifractionnaires et autres processus à régularité prescrite : définition du processus auto-régulé multifractionnaire et applications , 2007 .

[19]  Daniel Howard,et al.  Target detection in SAR imagery by genetic programming , 1999 .

[20]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[21]  Riccardo Poli,et al.  A Field Guide to Genetic Programming , 2008 .

[22]  No Value,et al.  IEEE International Conference on Image Processing , 2003 .

[23]  B. C. Brookes,et al.  Information Sciences , 2020, Cognitive Skills You Need for the 21st Century.

[24]  Leonardo Trujillo,et al.  Evolutionary-computer-assisted design of image operators that detect interest points using genetic programming , 2011, Image Vis. Comput..

[25]  Leonardo Trujillo,et al.  Synthesis of interest point detectors through genetic programming , 2006, GECCO.

[26]  Cordelia Schmid,et al.  Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.

[27]  Stéphane Mallat,et al.  A Wavelet Tour of Signal Processing, 2nd Edition , 1999 .

[28]  Marc Ebner,et al.  A Real-Time Evolutionary Object Recognition System , 2009, EuroGP.

[29]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[30]  James J. Little,et al.  Global localization using distinctive visual features , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[31]  John R. Koza,et al.  Human-competitive results produced by genetic programming , 2010, Genetic Programming and Evolvable Machines.

[32]  Gustavo Olague,et al.  Learning invariant region descriptor operators with genetic programming and the F-measure , 2008, 2008 19th International Conference on Pattern Recognition.

[33]  Edmund K. Burke,et al.  On improving genetic programming for symbolic regression , 2005, 2005 IEEE Congress on Evolutionary Computation.

[34]  Hitoshi Iba,et al.  Inference of differential equation models by genetic programming , 2002, Inf. Sci..

[35]  Sara Silva,et al.  GPLAB A Genetic Programming Toolbox for MATLAB , 2004 .

[36]  Cordelia Schmid,et al.  Local Grayvalue Invariants for Image Retrieval , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  C. Tricot Curves and Fractal Dimension , 1994 .

[38]  Hod Lipson,et al.  Distilling Free-Form Natural Laws from Experimental Data , 2009, Science.

[39]  Leonardo Trujillo,et al.  Visual learning of texture descriptors for facial expression recognition in thermal imagery , 2007, Comput. Vis. Image Underst..

[40]  Krzysztof Krawiec,et al.  Genetic Programming-based Construction of Features for Machine Learning and Knowledge Discovery Tasks , 2002, Genetic Programming and Evolvable Machines.

[41]  L. Spector,et al.  Quantum circuits for OR and AND of ORs , 2000 .

[42]  Krzysztof Krawiec,et al.  Visual learning by coevolutionary feature synthesis , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[43]  T. Mexia,et al.  Author ' s personal copy , 2009 .

[44]  P. Balasubramaniam,et al.  Solution of matrix Riccati differential equation for nonlinear singular system using genetic programming , 2009, Genetic Programming and Evolvable Machines.

[45]  J. L. Véhel,et al.  The Generalized Multifractional Brownian Motion , 2000 .

[46]  Pierrick Legrand,et al.  Local regularity-based image denoising , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[47]  Riccardo Poli,et al.  Genetic Programming for Feature Detection and Image Segmentation , 1996, Evolutionary Computing, AISB Workshop.

[48]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[49]  Leonardo Trujillo,et al.  Optimization of the hölder image descriptor using a genetic algorithm , 2010, GECCO '10.

[50]  J. L. Véhel,et al.  On the identification of the pointwise Hölder exponent of the generalized multifractional Brownian motion , 2004 .

[51]  Conor Ryan,et al.  Abstract functions and lifetime learning in genetic programming for symbolic regression , 2010, GECCO '10.

[52]  Yang Zhang,et al.  Evolving optimal feature extraction using multi-objective genetic programming: a methodology and preliminary study on edge detection , 2005, GECCO '05.

[53]  John R. Koza,et al.  Routine high-return human-competitive automated problem-solving by means of genetic programming , 2008, Inf. Sci..

[54]  Cordelia Schmid,et al.  A performance evaluation of local descriptors , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[55]  Ernesto Costa,et al.  Dynamic limits for bloat control in genetic programming and a review of past and current bloat theories , 2009, Genetic Programming and Evolvable Machines.

[56]  Jacques Lévy Véhel,et al.  Introduction to the Multifractal Analysis of Images , 1998 .

[57]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[58]  Hsiang-Cheh Huang,et al.  A refactoring method for cache-efficient swarm intelligence algorithms , 2012, Inf. Sci..

[59]  J. L. Véhel Fractal Approaches in Signal Processing , 1995 .

[60]  Ying-Hong Wang Image indexing and similarity retrieval based on spatial relationship model , 2003, Inf. Sci..

[61]  P. Laguna,et al.  Signal Processing , 2002, Yearbook of Medical Informatics.

[62]  Pierrick Legrand,et al.  Local regularity-based interpolation , 2003 .

[63]  Y. Fisher Fractal Image Encoding and Analysis , 1998 .

[64]  Vladan Babovic,et al.  Declarative and Preferential Bias in GP-based Scientific Discovery , 2002, Genetic Programming and Evolvable Machines.

[65]  H. Barlow Vision: A computational investigation into the human representation and processing of visual information: David Marr. San Francisco: W. H. Freeman, 1982. pp. xvi + 397 , 1983 .

[66]  Colin R. Reeves,et al.  Evolutionary computation: a unified approach , 2007, Genetic Programming and Evolvable Machines.

[67]  Pierrick Legrand,et al.  Signal and Image processing with FracLab , 2004 .

[68]  Tae-Sun Choi,et al.  Optimal depth estimation by combining focus measures using genetic programming , 2011, Inf. Sci..

[69]  Francisco Fernández de Vega,et al.  Multiobjective design of operators that detect points of interest in images , 2008, GECCO '08.