High on/off current ratio in ballistic CNTFETs based on tuning the gate insulator parameters for different ambient temperatures

A theoretical study is presented on the on/off current ratio limits for a ballistic coaxially-gated carbon nanotube field effect transistor (CNTFET) with highly doped source/drain regions. Based on changes in gate insulator dielectric constant and thickness, the current ratio has been estimated at different ambient temperatures. Decreasing the gate insulator thickness after a certain value around 3 nm causes the current ratio to degrade drastically. Although the higher dielectric constant values have a fair effect on current ratio, this effect could be suppressed when the device with a low gate insulator thickness works at a low ambient temperature. The simulation results also show that the temperature drastically degrades the current ratio value; whereas in a certain range of ambient temperature, tuning the values of gate insulator thickness and dielectric constant could be very helpful. In this way, the optimum values of gate insulator thickness and dielectric constant are identified to offer the highest on/off current ratio of the device.

[1]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[2]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[3]  Herbert Shea,et al.  Single- and multi-wall carbon nanotube field-effect transistors , 1998 .

[4]  P. Avouris,et al.  Nanotubes for electronics. , 2000, Scientific American.

[5]  S. Datta Nanoscale device modeling: the Green’s function method , 2000 .

[6]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[7]  Paul L. McEuen,et al.  High Performance Electrolyte Gated Carbon Nanotube Transistors , 2002 .

[8]  S. Wind,et al.  Carbon nanotube electronics , 2003, Digest. International Electron Devices Meeting,.

[9]  S. Datta,et al.  Performance projections for ballistic carbon nanotube field-effect transistors , 2002 .

[10]  S. Datta,et al.  Simulating quantum transport in nanoscale transistors: Real versus mode-space approaches , 2002 .

[11]  Mark S. Lundstrom,et al.  Theory of ballistic nanotransistors , 2003 .

[12]  Stefan Heinze,et al.  Unexpected scaling of the performance of carbon nanotube Schottky-barrier transistors , 2003 .

[13]  M. Lundstrom,et al.  Ballistic carbon nanotube field-effect transistors , 2003, Nature.

[14]  Jing Guo,et al.  Carbon Nanotube Field-Effect Transistors with Integrated Ohmic Contacts and High-κ Gate Dielectrics , 2004 .

[15]  J. Ramdani,et al.  High-performance carbon nanotube transistors on SrTiO3/Si substrates , 2004 .

[16]  Mark S. Lundstrom,et al.  Toward Multiscale Modeling of Carbon Nanotube Transistors , 2004 .

[17]  S. Datta Quantum Transport: Atom to Transistor , 2004 .

[18]  Mark S. Lundstrom,et al.  A numerical study of scaling issues for Schottky-barrier carbon nanotube transistors , 2003, IEEE Transactions on Electron Devices.

[19]  Mark S. Lundstrom,et al.  Simulation of phonon-assisted band-to-band tunneling in carbon nanotube field-effect transistors , 2005, cond-mat/0510122.

[20]  J. Knoch,et al.  High-performance carbon nanotube field-effect transistor with tunable polarities , 2005, IEEE Transactions on Nanotechnology.

[21]  S. Thompson,et al.  Moore's law: the future of Si microelectronics , 2006 .

[22]  R. Lake,et al.  Dielectric scaling of a zero-Schottky-barrier, 5nm gate, carbon nanotube transistor with source/drain underlaps , 2006 .

[23]  Nonequilibrium Green's function approach to phonon transport in defective carbon nanotubes. , 2006, Physical review letters.

[24]  S. Koswatta,et al.  MOSCNT: code for carbon nanotube transistor simulation , 2006 .

[25]  Jing Guo,et al.  CARBON NANOTUBE FIELD-EFFECT TRANSISTORS , 2006 .

[26]  Magnus Paulsson,et al.  Transmission eigenchannels from nonequilibrium Green's functions , 2007, cond-mat/0702295.

[27]  Yan Li,et al.  Y-contacted high-performance n-type single-walled carbon nanotube field-effect transistors: scaling and comparison with Sc-contacted devices. , 2009, Nano letters.

[28]  E. Pop,et al.  Multiband Mobility in Semiconducting Carbon Nanotubes , 2009, IEEE Electron Device Letters.

[29]  Zhihong Chen,et al.  Length scaling of carbon nanotube transistors. , 2010, Nature nanotechnology.

[30]  Mark S. Lundstrom,et al.  Sub-10 nm carbon nanotube transistor , 2011, 2011 International Electron Devices Meeting.

[31]  S. Mirzakuchaki,et al.  Dependence of Carbon Nanotube Field Effect Transistors Performance on Doping Level of Channel at Different Diameters: On/off current ratio , 2012, 1207.2065.