High on/off current ratio in ballistic CNTFETs based on tuning the gate insulator parameters for different ambient temperatures
暂无分享,去创建一个
[1] S. Iijima. Helical microtubules of graphitic carbon , 1991, Nature.
[2] S. Tans,et al. Room-temperature transistor based on a single carbon nanotube , 1998, Nature.
[3] Herbert Shea,et al. Single- and multi-wall carbon nanotube field-effect transistors , 1998 .
[4] P. Avouris,et al. Nanotubes for electronics. , 2000, Scientific American.
[5] S. Datta. Nanoscale device modeling: the Green’s function method , 2000 .
[6] W. D. de Heer,et al. Carbon Nanotubes--the Route Toward Applications , 2002, Science.
[7] Paul L. McEuen,et al. High Performance Electrolyte Gated Carbon Nanotube Transistors , 2002 .
[8] S. Wind,et al. Carbon nanotube electronics , 2003, Digest. International Electron Devices Meeting,.
[9] S. Datta,et al. Performance projections for ballistic carbon nanotube field-effect transistors , 2002 .
[10] S. Datta,et al. Simulating quantum transport in nanoscale transistors: Real versus mode-space approaches , 2002 .
[11] Mark S. Lundstrom,et al. Theory of ballistic nanotransistors , 2003 .
[12] Stefan Heinze,et al. Unexpected scaling of the performance of carbon nanotube Schottky-barrier transistors , 2003 .
[13] M. Lundstrom,et al. Ballistic carbon nanotube field-effect transistors , 2003, Nature.
[14] Jing Guo,et al. Carbon Nanotube Field-Effect Transistors with Integrated Ohmic Contacts and High-κ Gate Dielectrics , 2004 .
[15] J. Ramdani,et al. High-performance carbon nanotube transistors on SrTiO3/Si substrates , 2004 .
[16] Mark S. Lundstrom,et al. Toward Multiscale Modeling of Carbon Nanotube Transistors , 2004 .
[17] S. Datta. Quantum Transport: Atom to Transistor , 2004 .
[18] Mark S. Lundstrom,et al. A numerical study of scaling issues for Schottky-barrier carbon nanotube transistors , 2003, IEEE Transactions on Electron Devices.
[19] Mark S. Lundstrom,et al. Simulation of phonon-assisted band-to-band tunneling in carbon nanotube field-effect transistors , 2005, cond-mat/0510122.
[20] J. Knoch,et al. High-performance carbon nanotube field-effect transistor with tunable polarities , 2005, IEEE Transactions on Nanotechnology.
[21] S. Thompson,et al. Moore's law: the future of Si microelectronics , 2006 .
[22] R. Lake,et al. Dielectric scaling of a zero-Schottky-barrier, 5nm gate, carbon nanotube transistor with source/drain underlaps , 2006 .
[23] Nonequilibrium Green's function approach to phonon transport in defective carbon nanotubes. , 2006, Physical review letters.
[24] S. Koswatta,et al. MOSCNT: code for carbon nanotube transistor simulation , 2006 .
[25] Jing Guo,et al. CARBON NANOTUBE FIELD-EFFECT TRANSISTORS , 2006 .
[26] Magnus Paulsson,et al. Transmission eigenchannels from nonequilibrium Green's functions , 2007, cond-mat/0702295.
[27] Yan Li,et al. Y-contacted high-performance n-type single-walled carbon nanotube field-effect transistors: scaling and comparison with Sc-contacted devices. , 2009, Nano letters.
[28] E. Pop,et al. Multiband Mobility in Semiconducting Carbon Nanotubes , 2009, IEEE Electron Device Letters.
[29] Zhihong Chen,et al. Length scaling of carbon nanotube transistors. , 2010, Nature nanotechnology.
[30] Mark S. Lundstrom,et al. Sub-10 nm carbon nanotube transistor , 2011, 2011 International Electron Devices Meeting.
[31] S. Mirzakuchaki,et al. Dependence of Carbon Nanotube Field Effect Transistors Performance on Doping Level of Channel at Different Diameters: On/off current ratio , 2012, 1207.2065.