Exponential Gaussian approach for spectral modelling: The EGO algorithm II. Band asymmetry
暂无分享,去创建一个
Loredana Pompilio | Ted L. Roush | Edward A. Cloutis | Giuseppe Pedrazzi | E. Cloutis | T. Roush | G. Pedrazzi | M. Craig | M. A. Craig | L. Pompilio
[1] L. V. Moroz,et al. Reflectance spectra of olivine-orthopyroxene-bearing assemblages at decreased temperatures: implications for remote sensing of asteroids , 2000 .
[2] Michael J. Gaffey,et al. Pyroxene spectroscopy revisited - Spectral-compositional correlations and relationship to geothermometry , 1991 .
[3] S. Taylor,et al. Planetary Crusts: Their Composition, Origin and Evolution , 2009 .
[4] M. Osborne,et al. Temperature-dependence of Fe-Ti spectra in the visible region - Implications to mapping Ti concentrations of hot planetary surfaces , 1978 .
[5] R. Singer,et al. The Effect of Thermal Variations on Reflectance Spectra of Mafic Minerals , 1983 .
[6] R. Clark,et al. Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications , 1984 .
[7] E. Cloutis. Pyroxene reflectance spectra: Minor absorption bands and effects of elemental substitutions , 2002 .
[8] T. Hiroi,et al. The mystery of 506.5 nm feature of reflectance spectra of Vesta and Vestoids: Evidence for space weathering? , 2001 .
[9] R. Singer,et al. Possible temperature variation effects on the interpretation of spatially resolved reflectance observations of asteroid surfaces , 1987 .
[10] F. Vilas,et al. The McDonald Observatory Serendipitous UV/Blue Spectral Survey of Asteroids , 1997 .
[11] M. Darby Dyar,et al. Spectroscopy of synthetic Mg‐Fe pyroxenes I: Spin‐allowed and spin‐forbidden crystal field bands in the visible and near‐infrared , 2007 .
[12] Carle M. Pieters,et al. Deconvolution of mineral absorption bands: An improved approach , 1990 .
[13] R. Singer. Near-infrared spectral reflectance of mineral mixtures - Systematic combinations of pyroxenes, olivine, and iron oxides , 1981 .
[14] R. G. J. Strens,et al. Mineralogical Applications of Crystal Field Theory , 1973 .
[15] R. Burns. The Polarized Spectra of Iron in Silicates: Olivine. A Discussion of Neglected Contributions from Fe2+ Ions in M(1) Sites , 1974 .
[16] Loredana Pompilio,et al. Exponential Gaussian approach for spectral modeling: The EGO algorithm I. Band saturation , 2009 .
[17] Paul G. Lucey,et al. Implications of temperature‐dependent near‐IR spectral properties of common minerals and meteorites for remote sensing of asteroids , 1999 .
[18] K. Keil,et al. The influence of temperature on the spectra of the A‐asteroids and implications for their silicate chemistry , 1998 .
[19] U. Schade,et al. Near‐infrared reflectance spectra from bulk samples of the two Martian meteorites Zagami and Nakhla , 1999 .
[20] R. Burns,et al. High temperature crystal field spectra of transition metal-bearing minerals - Relevance to remote-sensed spectra of planetary surfaces , 1980 .
[21] Roger G. Burns,et al. Mineralogical applications of crystal field theory , 1970 .
[22] Robert B. Singer,et al. Effects of temperature on remotely sensed mineral absorption features , 1985 .
[23] Paul G. Lucey,et al. Temperature-Dependent Near-Infrared Spectral Properties of Minerals, Meteorites, and Lunar Soil , 2002 .
[24] Roger,et al. Spectroscopy of Rocks and Minerals , and Principles of Spectroscopy , 2002 .