s -numbers in information-based complexity
暂无分享,去创建一个
[1] Werner Linde,et al. Infinitely divisible and stable measures on Banach spaces , 1983 .
[2] HILBERT-Zahlen von Operatoren in BANACHräumen , 1977 .
[3] C. Bessaga,et al. Selected topics in infinite-dimensional topology , 1975 .
[4] Joram Lindenstrauss,et al. Classical Banach spaces , 1973 .
[5] Henryk Wozniakowski,et al. Average Case Optimality for Linear Problems , 1984, Theor. Comput. Sci..
[6] Grzegorz W. Wasilkowski,et al. How powerful is continuous nonlinear information for linear problems? , 1986, J. Complex..
[7] Henryk Wozniakowski,et al. A general theory of optimal algorithms , 1980, ACM monograph series.
[8] E. Michael. Continuous Selections. I , 1956 .
[9] H. Woxniakowski. Information-Based Complexity , 1988 .
[10] K. Parthasarathy,et al. Probability measures on metric spaces , 1967 .
[11] David Lee,et al. Approximation of linear functionals on a banach space with a Gaussian measure , 1986, J. Complex..
[12] A. Pietsch,et al. s-Numbers of operators in Banach spaces , 1974 .
[13] H. Kuo. Gaussian Measures in Banach Spaces , 1975 .
[14] A. Pietsch. Eigenvalues and S-Numbers , 1987 .
[15] Charles A. Micchelli,et al. Orthogonal projections are optimal algorithms , 1984 .
[16] Edward W. Packel,et al. Recent developments in information-based complexity , 1987 .
[17] H. Woźniakowski,et al. Can adaption help on the average? , 1984 .
[18] A. Pinkus. n-Widths in Approximation Theory , 1985 .
[19] E. Packel. Linear problems (with extended range) have linear optimal algorithms , 1986 .
[20] K. Babenko. Estimating the quality of computational algorithms — Part 1 , 1976 .
[21] H. Elton Lacey,et al. The Isometric Theory of Classical Banach Spaces , 1974 .