Optical MEMS: From Micromirrors to Complex Systems

Microelectromechanical system (MEMS) technology, and surface micromachining in particular, have led to the development of miniaturized optical devices with a substantial impact in a large number of application areas. The reason is the unique MEMS characteristics that are advantageous in fabrication, systems integration, and operation of micro-optical systems. The precision mechanics of MEMS, microfabrication techniques, and optical functionality all make possible a wide variety of movable and tunable mirrors, lenses, filters, and other optical structures. In these systems, electrostatic, magnetic, thermal, and pneumatic actuators provide mechanical precision and control. The large number of electromagnetic modes that can be accommodated by beam-steering micromirrors and diffractive optical MEMS, combined with the precision of these types of elements, is utilized in fiber-optical switches and filters, including dispersion compensators. The potential to integrate optics with electronics and mechanics is a great advantage in biomedical instrumentation, where the integration of miniaturized optical detection systems with microfluidics enables smaller, faster, more-functional, and cheaper systems. The precise dimensions and alignment of MEMS devices, combined with the mechanical stability that comes with miniaturization, make optical MEMS sensors well suited to a variety of challenging measurements. Micro-optical systems also benefit from the addition of nanostructures to the MEMS toolbox. Photonic crystals and microcavities, which represent the ultimate in miniaturized optical components, enable further scaling of optical MEMS.

[1]  R.S. Muller,et al.  Integrated resonant-microbridge vapor sensor , 1984, 1984 International Electron Devices Meeting.

[2]  R. Muller,et al.  Optoelectronic packaging using silicon surface-micromachined alignment mirrors , 1995, IEEE Photonics Technology Letters.

[3]  Kam Y. Lau,et al.  A raster-scanning full-motion video display using polysilicon micromachined mirrors , 2000 .

[4]  Hans Zappe,et al.  Materials, effects and components for tunable micro‐optics , 2007 .

[5]  O. Solgaard,et al.  Frontside-only processing of 2-D MEMS scanner for miniature dual-axis confocal microendoscopes , 2011, 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference.

[6]  Vladimir S. Ilchenko,et al.  Ultrahigh optical Q factors of crystalline resonators in the linear regime , 2006 .

[7]  Hans Zappe,et al.  A MEMS-based variable micro-lens system , 2006 .

[8]  Christelle Monat,et al.  Integrated optofluidics: A new river of light , 2007 .

[9]  Micromechanical voltage controlled switches and circuits , 1978, 1978 International Electron Devices Meeting.

[11]  Luke P. Lee,et al.  Micromachined transmissive scanning confocal microscope. , 2004, Optics letters.

[12]  Luke P. Lee,et al.  Optofluidic control using photothermal nanoparticles , 2006, Nature materials.

[13]  S. Turner,et al.  Real-Time DNA Sequencing from Single Polymerase Molecules , 2009, Science.

[14]  Alexandre Poulin,et al.  Tunable Fiber Laser Using a MEMS-Based in Plane Fabry-Pérot Filter , 2010, IEEE Journal of Quantum Electronics.

[15]  Olav Solgaard,et al.  Photonic-crystal membranes for optical detection of single nano-particles, designed for biosensor application. , 2012, Optics express.

[16]  M. Mehregany,et al.  Integrated fabrication of polysilicon mechanisms , 1988 .

[17]  H. Zappe,et al.  An all-nickel magnetostatic MEMS scanner , 2012 .

[18]  K. Vahala,et al.  A picogram- and nanometre-scale photonic-crystal optomechanical cavity , 2008, Nature.

[19]  Ajay Agarwal,et al.  Label-free and highly sensitive biomolecular detection using SERS and electrokinetic preconcentration. , 2009, Lab on a chip.

[20]  R. Howe,et al.  Polycrystalline Silicon Micromechanical Beams , 1983 .

[21]  Y. Peter,et al.  Guided-mode resonance photonic crystal slab sensors based on bead monolayer geometry. , 2008, Optics express.

[22]  Y. Peter,et al.  Design and Demonstration of an In-Plane Silicon-on-Insulator Optical MEMS Fabry–Pérot-Based Accelerometer Integrated With Channel Waveguides , 2012, Journal of Microelectromechanical Systems.

[23]  Alexandre Poulin,et al.  Gas sensing using polymer-functionalized deformable Fabry-Perot interferometers , 2013 .

[24]  George M. Whitesides,et al.  Integrated fluorescent light source for optofluidic applications , 2005 .

[25]  H. Craighead,et al.  Rapid prototyping of nanofluidic systems using size-reduced electrospun nanofibers for biomolecular analysis. , 2010, Small.

[26]  David Erickson,et al.  A method for nanofluidic device prototyping using elastomeric collapse , 2009, Proceedings of the National Academy of Sciences.

[27]  A. F. Sarioglu,et al.  High-Resolution Nanomechanical Mapping Using Interferometric-Force-Sensing AFM Probes , 2011, Journal of Microelectromechanical Systems.

[28]  Optofluidic Maskless Lithography System , 2007, TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference.

[29]  Shanhui Fan,et al.  Photonic crystal slabs demonstrating strong broadband suppression of transmission in the presence of disorders. , 2004, Optics letters.

[30]  A. Poulin,et al.  Advances in Modeling, Design, and Fabrication of Deep-Etched Multilayer Resonators , 2012, Journal of Lightwave Technology.

[31]  H. Zappe,et al.  A fully integrated optofluidic attenuator , 2011 .

[32]  R. Muller,et al.  Miniature Cantilever Beams Fabricated by Anisotropic Etching of Silicon , 1980 .

[33]  Mangilal Agarwal,et al.  Polymer-based variable focal length microlens system , 2004 .

[34]  Nicolas Godbout,et al.  Raman lasing in As₂S₃ high-Q whispering gallery mode resonators. , 2013, Optics letters.

[35]  Sindy K. Y. Tang,et al.  Dynamically reconfigurable liquid-core liquid-cladding lens in a microfluidic channel. , 2008, Lab on a chip.

[36]  Wook Park,et al.  Three-dimensional fabrication of heterogeneous microstructures using soft membrane deformation and optofluidic maskless lithography. , 2009, Lab on a chip.

[37]  R. Muller,et al.  Linear microvibromotor for positioning optical components , 1995 .

[38]  Demetri Psaltis,et al.  Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging , 2008, Proceedings of the National Academy of Sciences.

[39]  Christopher H Contag,et al.  Three-dimensional in vivo imaging by a handheld dual-axes confocal microscope. , 2008, Optics express.

[40]  N. Justis,et al.  Fluidic zoom-lens-on-a-chip with wide field-of-view tuning range , 2004, IEEE Photonics Technology Letters.

[41]  H. Zappe,et al.  Reconfigurable liquid micro-lenses with high positioning accuracy , 2008 .

[42]  A. Werber,et al.  Tunable Pneumatic Microoptics , 2008, Journal of Microelectromechanical Systems.

[43]  V. Milanovic,et al.  Vertical combdrive based 2-D gimbaled micromirrors with large static rotation by backside island isolation , 2004, IEEE Journal of Selected Topics in Quantum Electronics.

[44]  Kensall D. Wise,et al.  Integrated sensors, MEMS, and microsystems: Reflections on a fantastic voyage , 2007 .

[45]  Kurt E. Petersen,et al.  Silicon Torsional Scanning Mirror , 1980, IBM J. Res. Dev..

[46]  Hans Zappe,et al.  Micro-optics: a micro-tutorial , 2012 .

[47]  L. L. Buhl,et al.  Wavelength-selective 1x4 switch for 128 WDMchannels at 50 GHz spacing , 2002 .

[48]  Y. Peter,et al.  Intrinsic quality factor determination in whispering gallery mode microcavities using a single Stokes parameters measurement. , 2011, Optics express.

[49]  F. Marty,et al.  Cylindrical Surfaces Enable Wavelength-Selective Extinction and Sub-0.2 nm Linewidth in 250 $\mu\hbox{m}$-Gap Silicon Fabry–Pérot Cavities , 2012, Journal of Microelectromechanical Systems.

[50]  T. Asano,et al.  Spontaneous-emission control by photonic crystals and nanocavities , 2007 .

[51]  Benjamin J Eggleton,et al.  High-Q microfluidic cavities in silicon-based two-dimensional photonic crystal structures. , 2008, Optics letters.

[52]  Luke P. Lee,et al.  VERTICAL MICROLENS SCANNER FOR 3D IMAGING , 2002 .

[53]  M. Lipson,et al.  Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides , 2009, Nature.

[54]  T. Kippenberg,et al.  Microresonator-Based Optical Frequency Combs , 2011, Science.

[55]  R. Howe,et al.  Photonic Crystal Fiber Tip Sensor for High-Temperature Measurement , 2011, IEEE Sensors Journal.

[56]  Benjamin J. Eggleton,et al.  Reconfigurable photonic crystal circuits , 2010 .

[57]  A. Seifert,et al.  A Tunable Optofluidic Silicon Optical Bench , 2012, Journal of Microelectromechanical Systems.

[58]  A. Werber,et al.  Pneumatically Actuated, Membrane-Based, Micro-Optical Devices , 2006, 19th IEEE International Conference on Micro Electro Mechanical Systems.

[59]  Tony Jun Huang,et al.  Hydrodynamically tunable optofluidic cylindrical microlens. , 2007, Lab on a chip.

[60]  O. Solgaard,et al.  Tunable optical transversal filters based on a Gires-Tournois interferometer with MEMS phase shifters , 2004, IEEE Journal of Selected Topics in Quantum Electronics.

[61]  Clinton Randy Giles,et al.  The Lucent LambdaRouter: MEMS technology of the future here today , 2002, IEEE Commun. Mag..

[62]  R. Muller,et al.  IC-processed electrostatic micromotors , 1989 .

[63]  Hans Zappe,et al.  Chromatic aberration control for tunable all-silicone membrane microlenses. , 2011, Optics express.

[64]  O. Solgaard,et al.  Analysis of guided-resonance-based polarization beam splitting in photonic crystal slabs. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[65]  W. Piyawattanametha,et al.  Two-Dimensional MEMS Scanner for Dual-Axes Confocal Microscopy , 2007, Journal of Microelectromechanical Systems.

[66]  Y. Peter,et al.  IN-PLANE MEMS-BASED FABRY-PEROT FILTER FOR HIGH-SPEED WAVELENGTH-SWEPT SEMICONDUCTOR LASER , 2012 .

[67]  R. Holzwarth,et al.  Kippenberg Microresonator-Based Optical Frequency Combs , 2011 .

[68]  Wei Zhang,et al.  Polyacrylate membranes for tunable liquid-filled microlenses , 2013 .

[69]  R. J. Schwartz,et al.  Electrofluidic displays using Young-Laplace transposition of brilliant pigment dispersions , 2009 .

[70]  Viktor Malyarchuk,et al.  Enhanced fluorescence emission from quantum dots on a photonic crystal surface , 2007, Nature Nanotechnology.

[71]  S. Fan,et al.  Mechanically switchable photonic crystal filter with either all-pass transmission or flat-top reflection characteristics. , 2003, Optics letters.

[72]  Yu-Chong Tai,et al.  IC-processed electrostatic synchronous micromotors , 1989 .

[73]  P. H. Yap,et al.  Determining refractive index of single living cell using an integrated microchip , 2007 .

[74]  K. Vahala Optical microcavities , 2003, Nature.

[75]  H. Craighead,et al.  Zero-mode waveguides: sub-wavelength nanostructures for single molecule studies at high concentrations. , 2008, Methods.

[76]  Hans Zappe,et al.  Tunable microfluidic microlenses. , 2005, Applied optics.

[77]  D. Psaltis,et al.  Developing optofluidic technology through the fusion of microfluidics and optics , 2006, Nature.

[78]  Robert Conant Surface-Micromachined Mirrors , 2003 .

[79]  O. Solgaard,et al.  Two-Dimensional Photonic Crystals Fabricated in Monolithic Single-Crystal Silicon , 2010, IEEE Photonics Technology Letters.

[80]  Kerry J. Vahala,et al.  Chemically etched ultrahigh-Q wedge-resonator on a silicon chip , 2012, Nature Photonics.

[81]  Stephen F. Bart,et al.  Design considerations for micromachined electric actuators , 1988 .

[82]  Yves-Alain Peter,et al.  All-silicon integrated Fabry―Pérot cavity for volume refractive index measurement in microfluidic systems , 2009 .

[83]  H. Zappe,et al.  Electrowetting for Tunable Microoptics , 2008, Journal of Microelectromechanical Systems.

[84]  T. Kippenberg,et al.  Cavity Optomechanics: Back-Action at the Mesoscale , 2008, Science.

[85]  Larry J. Hornbeck,et al.  Deformable-Mirror Spatial Light Modulators , 1990, Optics & Photonics.

[86]  Hans Zappe,et al.  Fundamentals of Micro-Optics , 2010 .

[87]  J.J. Sniegowski,et al.  Multi-layer enhancement to polysilicon surface-micromachining technology , 1997, International Electron Devices Meeting. IEDM Technical Digest.

[88]  K. Oh,et al.  SERS-based immunoassay using a gold array-embedded gradient microfluidic chip. , 2012, Lab on a chip.

[89]  Yi Rao,et al.  1550 nm high contrast grating VCSEL. , 2010, Optics express.

[90]  D. W. Burns,et al.  Fine-grained polysilicon films with built-in tensile strain , 1988 .

[91]  Christian Rembe,et al.  Micromirrors for Adaptive-Optics Arrays , 2001 .

[92]  Kristofer S. J. Pister,et al.  Micromachined corner cube reflectors as a communication link , 1995 .

[93]  H. Nathanson,et al.  The mirror-matrix tube: A novel light valve for projection displays , 1975, IEEE Transactions on Electron Devices.

[94]  Y. Peter,et al.  OPTOFLUIDIC DEVICE FOR HIGH RESOLUTION VOLUME REFRACTIVE INDEX MEASUREMENT OF SINGLE CELL , 2012 .

[95]  T. Krauss,et al.  Temperature stabilization of optofluidic photonic crystal cavities , 2009 .

[96]  O. Solgaard,et al.  A Large-Area High-Reflectivity Broadband Monolithic Single-Crystal-Silicon Photonic Crystal Mirror MEMS Scanner With Low Dependence on Incident Angle and Polarization , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[97]  R. Muller,et al.  Pin joints, gears, springs, cranks, and other novel micromechanical structures , 1987 .

[98]  R. Muller,et al.  Surface-micromachined mirrors for laser-beam positioning , 1996 .

[99]  R. Muller,et al.  Addressable Microlens Array to Improve Dynamic Range of Shack–Hartmann Sensors , 2006, Journal of Microelectromechanical Systems.

[100]  Shanhui Fan,et al.  Analysis of guided resonances in photonic crystal slabs , 2002 .

[101]  R. Feuerstein,et al.  Integrated Optofluidic Iris , 2012, Journal of Microelectromechanical Systems.

[102]  B. Berge,et al.  Electrowetting : a recent outbreak , 2001 .

[103]  Yu-Chong Tai,et al.  IC-processed electrostatic micro-motors , 1988, Technical Digest., International Electron Devices Meeting.

[104]  Ming C. Wu,et al.  Optical MEMS for Lightwave Communication , 2006, Journal of Lightwave Technology.

[105]  Y. Peter,et al.  Raman scattering emission in high Q factor As2S3 microspheres , 2013, CLEO: 2013.

[106]  William C. Tang,et al.  Laterally driven polysilicon resonant microstructures , 1989, IEEE Micro Electro Mechanical Systems, , Proceedings, 'An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots'.

[107]  Scot S. Olivier,et al.  MOEMS spatial light modulator development at the Center for Adaptive Optics , 2003, SPIE MOEMS-MEMS.

[108]  K. J. Gabriel,et al.  Micro gears and turbines etched from silicon , 1987 .

[109]  Shanhui Fan,et al.  Angular and polarization properties of a photonic crystal slab mirror. , 2004, Optics express.

[110]  S. Arnold,et al.  Whispering-gallery-mode biosensing: label-free detection down to single molecules , 2008, Nature Methods.

[111]  O. Solgaard,et al.  Scalable optical cross-connect switch using micromachined mirrors , 2000, IEEE Photonics Technology Letters.

[112]  O. Solgaard,et al.  Deformable grating optical modulator. , 1992, Optics letters.

[113]  Tunable Micro-fluidic Micro-lenses , 2007 .

[114]  S. Turner,et al.  Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations , 2003, Science.

[115]  A. Seifert,et al.  Polymer/Silicon Hard Magnetic Micromirrors , 2012, Journal of Microelectromechanical Systems.

[116]  Y. Peter,et al.  Tunable structures comprising two photonic crystal slabs--optical study in view of multi-analyte enhanced detection. , 2009, Optics express.

[117]  E. Purcell Spontaneous Emission Probabilities at Radio Frequencies , 1995 .

[118]  R. Howe,et al.  Highly Sensitive Monolithic Silicon Photonic Crystal Fiber Tip Sensor for Simultaneous Measurement of Refractive Index and Temperature , 2011, Journal of Lightwave Technology.

[119]  Jerry L. Leonard,et al.  Integration of deformable mirror devices with optical fibers and waveguides , 1993, Other Conferences.

[120]  Shin-Tson Wu,et al.  Tunable-focus liquid microlens array using dielectrophoretic effect. , 2008, Optics express.

[121]  L. J. Hornbeck,et al.  Current status of the digital micromirror device (DMD) for projection television applications , 1993, Proceedings of IEEE International Electron Devices Meeting.

[122]  R. Howe,et al.  Multilayered Monolithic Silicon Photonic Crystals , 2011, IEEE Photonics Technology Letters.

[123]  Luke P. Lee,et al.  Biophotonic MEMS for single molecule detection and manipulation , 2002, 2nd Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology. Proceedings (Cat. No.02EX578).

[124]  Dukhyun Choi,et al.  Additional amplifications of SERS via an optofluidic CD-based platform. , 2009, Lab on a chip.

[125]  Olav Solgaard,et al.  Fast-scanning two-photon fluorescence imaging based on a microelectromechanical systems two- dimensional scanning mirror. , 2006, Optics letters.

[126]  V. Lien,et al.  A prealigned process of integrating optical waveguides with microfluidic devices , 2004, IEEE Photonics Technology Letters.

[127]  Silica microdisk Coupled Resonator Optical Waveguide , 2009, 2009 IEEE/LEOS International Conference on Optical MEMS and Nanophotonics.

[128]  D. Psaltis,et al.  Nanofluidic tuning of photonic crystal circuits , 2006 .

[129]  R. Muller,et al.  A planar-processed PI-FET accelerometer , 1980, 1980 International Electron Devices Meeting.

[130]  K. Hane 3.01 – Micro-Mirrors , 2008 .

[131]  Rajan P Kulkarni,et al.  Label-Free, Single-Molecule Detection with Optical Microcavities , 2007, Science.

[132]  K. J. Gabriel,et al.  Design considerations for a practical electrostatic micro-motor , 1987 .

[133]  OPTOFLUIDIC DEVICE FOR HIGH RESOLUTION AND MULTIPARAMETRIC MEASUREMENT OF SINGLE BIOLOGICAL CELLS , 2014 .

[134]  N. Melosh,et al.  High-Bandwidth AFM Probes for Imaging in Air and Fluid , 2013, Journal of Microelectromechanical Systems.

[135]  G S Kino,et al.  Micromachined scanning confocal optical microscope. , 1996, Optics letters.

[136]  J. Rogers,et al.  Two-axis MEMS scanner with transfer-printed high-reflectivity, broadband monolithic silicon photonic crystal mirrors. , 2013, Optics express.

[137]  Asif Godil Diffractive MEMS technology offers a new platform for optical networks , 2002 .

[138]  K.Y. Lau,et al.  Micromachined polysilicon microscanners for barcode readers , 1996, IEEE Photonics Technology Letters.

[139]  O. Solgaard,et al.  Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs , 2003 .

[140]  G. Kino,et al.  Modeling and Demonstration of Thermally Stable High-Sensitivity Reproducible Acoustic Sensors , 2012, Journal of Microelectromechanical Systems.

[141]  Y. Peter,et al.  Periodic and non-periodic frequency selection in an erbium doped fiber laser by silica microdisk optical cavity filters. , 2010, Optics express.