Note---Estimating Geographic Customer Densities Using Kernel Density Estimation

This paper shows how kernel density estimation may be used to estimate flexibly the geographic distribution of customers in a market. In addition it shows how a density-based product positioning methodology may be applied to site selection, using the estimated geographic customer density to help locate a new or relocated store or distribution center. This application provides a conceptual basis for more complicated site selection and spatial demand models which might involve several predictor variables.

[1]  S. Cohen,et al.  Evaluating Store Sites and Determining Store Rents , 1960 .

[2]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[3]  C. Craig,et al.  Formulating Retail Location Strategy in a Changing Environment , 1983 .

[4]  E. Parzen Nonparametric Statistical Data Modeling , 1979 .

[5]  David L. Huff,et al.  Delimiting the Areal Extent of a Market Area , 1977 .

[6]  V. A. Epanechnikov Non-Parametric Estimation of a Multivariate Probability Density , 1969 .

[7]  David L. Huff,et al.  Measuring the Congruence of Market Areas , 1984 .

[8]  Walter Christaller Die zentralen Orte in Süddeutschland , 1980 .

[9]  R. Duncan Luce,et al.  Individual Choice Behavior , 1959 .

[10]  Wagner A. Kamakura,et al.  Predicting Choice Shares under Conditions of Brand Interdependence , 1984 .

[11]  Jordan J. Louviere,et al.  Using discrete choice experiments and multinomial logit choice models to forecast trial in a competitive retail environment: A fast food restaurant illustration. , 1984 .

[12]  M. Rosenblatt Remarks on Some Nonparametric Estimates of a Density Function , 1956 .

[13]  M. Woodroofe On Choosing a Delta-Sequence , 1970 .

[14]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[15]  A. Fotheringham,et al.  Spatial Competition and Agglomeration in Urban Modelling , 1985 .

[16]  B. Silverman Two Books on Density Estimation , 1985 .

[17]  J. L. Walsh,et al.  The theory of splines and their applications , 1969 .

[18]  David B. MacKay,et al.  Spatial Measurement of Retail Store Demand , 1973 .

[19]  M. Stone Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .

[20]  Ming-Mei Wang,et al.  An individual difference model for the multidimensional analysis of preference data , 1972 .

[21]  Leonard M. Lodish,et al.  A Model and Measurement Methodology for Predicting Individual Consumer Choice , 1981 .

[22]  M. J. Fryer A Review of Some Non-parametric Methods of Density Estimation , 1977 .

[23]  William Applebaum Can Store Location Research be A Science , 1965 .

[24]  William C. Black,et al.  Spatial Demand Models in an Intrabrand Context , 1985 .

[25]  T. Oum,et al.  Determinant Attributes in Retail Patronage: Seasonal, Temporal, Regional, and International Comparisons , 1983 .

[26]  A. Lösch The economics of location , 1954 .

[27]  Lee G. Cooper,et al.  Parameter Estimation for a Multiplicative Competitive Interaction Model—Least Squares Approach , 1974 .

[28]  C. Joseph Clawson Fitting Branch Locations, Performance Standards, and Marketing Strategies to Local Conditions , 1974 .

[29]  S. Folland,et al.  Predicting hospital market shares. , 1983, Inquiry : a journal of medical care organization, provision and financing.

[30]  Imran S. Currim Predictive Testing of Consumer Choice Models Not Subject to Independence of Irrelevant Alternatives , 1982 .

[31]  B. Silverman,et al.  Choosing the window width when estimating a density , 1978 .