Computation Algorithm for Convex Semi-infinite Program with Second-Order Cones: Special Analyses for Affine and Quadratic Case
暂无分享,去创建一个
[1] Shu-Cherng Fang,et al. Solving convex programs with infinitely many linear constraints by a relaxed cutting plane method , 1999 .
[2] J. Frédéric Bonnans,et al. Perturbation analysis of second-order cone programming problems , 2005, Math. Program..
[3] C. C. Gonzaga,et al. An improved algorithm for optimization problems with functional inequality constraints , 1980 .
[4] Arkadi Nemirovski,et al. Robust solutions of uncertain linear programs , 1999, Oper. Res. Lett..
[5] R. Reemtsen,et al. Semi‐Infinite Programming , 1998 .
[6] Shunsuke Hayashi,et al. An Explicit Exchange Algorithm For Linear Semi-Infinite Programming Problems With Second-Order Cone Constraints , 2009, SIAM J. Optim..
[7] J. Faraut,et al. Analysis on Symmetric Cones , 1995 .
[8] Masao Fukushima,et al. A Regularized Explicit Exchange Method for Semi-Infinite Programs with an Infinite Number of Conic Constraints , 2012, SIAM J. Optim..
[9] J. Frédéric Bonnans,et al. Perturbation Analysis of Optimization Problems , 2000, Springer Series in Operations Research.
[10] Chih-Jen Lin,et al. An Unconstrained Convex Programming Approach to Linear Semi-Infinite Programming , 1998, SIAM J. Optim..
[11] Marco A. López,et al. Penalty and Smoothing Methods for Convex Semi-Infinite Programming , 2009, Math. Oper. Res..
[12] Kenneth O. Kortanek,et al. A Central Cutting Plane Algorithm for Convex Semi-Infinite Programming Problems , 1993, SIAM J. Optim..
[13] Yasushi Narushima,et al. A Smoothing Newton Method with Fischer-Burmeister Function for Second-Order Cone Complementarity Problems , 2011, J. Optim. Theory Appl..
[14] G. Weber,et al. RCMARS: Robustification of CMARS with different scenarios under polyhedral uncertainty set , 2011 .
[15] Liqun Qi,et al. Semismooth Newton Methods for Solving Semi-Infinite Programming Problems , 2003, J. Glob. Optim..
[16] Arkadi Nemirovski,et al. Robust Convex Optimization , 1998, Math. Oper. Res..
[17] Marco A. López,et al. Linear semi-infinite programming theory: An updated survey , 2002, Eur. J. Oper. Res..
[18] Georg Still,et al. Discretization in semi-infinite programming: the rate of convergence , 2001, Math. Program..
[19] Dong-Hui Li,et al. A Smoothing Newton Method for Semi-Infinite Programming , 2004, J. Glob. Optim..
[20] Dimitri P. Bertsekas,et al. Convex Analysis and Optimization , 2003 .
[21] Rembert Reemtsen,et al. Numerical Methods for Semi-Infinite Programming: A Survey , 1998 .
[22] Oliver Stein,et al. Solving Semi-Infinite Optimization Problems with Interior Point Techniques , 2003, SIAM J. Control. Optim..
[23] Soon-Yi Wu,et al. On Linear Semi-Infinite Programming Problems: An Algorithm , 1992 .
[24] Masao Fukushima,et al. A Combined Smoothing and Regularization Method for Monotone Second-Order Cone Complementarity Problems , 2005, SIAM J. Optim..
[25] Kenneth O. Kortanek,et al. Semi-Infinite Programming: Theory, Methods, and Applications , 1993, SIAM Rev..
[26] Defeng Sun,et al. Complementarity Functions and Numerical Experiments on Some Smoothing Newton Methods for Second-Order-Cone Complementarity Problems , 2003, Comput. Optim. Appl..
[27] Marco A. López,et al. A New Exchange Method for Convex Semi-Infinite Programming , 2010, SIAM J. Optim..
[28] Masao Fukushima,et al. Smoothing Functions for Second-Order-Cone Complementarity Problems , 2002, SIAM J. Optim..
[29] Laurent El Ghaoui,et al. Robust Optimization , 2021, ICORES.
[30] Stephen P. Boyd,et al. Applications of second-order cone programming , 1998 .
[31] Alexander Shapiro,et al. First and Second Order Optimality Conditions and Perturbation Analysis of Semi-Infinite Programming Problems , 1998 .
[32] Zhang Lixia. A matrix-splitting method for symmetric affine second-order cone complementarity problems , 2008 .
[33] Dong-Hui Li,et al. An iterative method for solving KKT system of the semi-infinite programming , 2005, Optim. Methods Softw..
[34] Hiroshi Yamashita,et al. A primal–dual interior point method for nonlinear optimization over second-order cones , 2009, Optim. Methods Softw..
[35] Masao Fukushima,et al. An SQP-type algorithm for nonlinear second-order cone programs , 2007, Optim. Lett..
[36] Ya-Xiang Yuan,et al. Recent advances in numerical methods for nonlinear equations andnonlinear least squares , 2011 .