Computation Algorithm for Convex Semi-infinite Program with Second-Order Cones: Special Analyses for Affine and Quadratic Case

We focus on the convex semi-infinite program with second-order cone constraints (for short, SOCCSIP), which has wide applications such as filter design, robust optimization, and so on. For solving the SOCCSIP, we propose an explicit exchange method, and prove that the algorithm terminates in a finite number of iterations. In the convergence analysis, we do not need to use the special structure of second-order cone (SOC) when the objective or constraint function is strictly convex. However, if both of them are non-strictly convex and constraint function is affine or quadratic, then we have to utilize the SOC complementarity conditions and the spectral factorization techniques associated with Euclidean Jordan algebra. We also show that the obtained output is an approximate optimum of SOCCSIP. We report some numerical results involving the application to the robust optimization in the classical convex semi-infinite program.

[1]  Shu-Cherng Fang,et al.  Solving convex programs with infinitely many linear constraints by a relaxed cutting plane method , 1999 .

[2]  J. Frédéric Bonnans,et al.  Perturbation analysis of second-order cone programming problems , 2005, Math. Program..

[3]  C. C. Gonzaga,et al.  An improved algorithm for optimization problems with functional inequality constraints , 1980 .

[4]  Arkadi Nemirovski,et al.  Robust solutions of uncertain linear programs , 1999, Oper. Res. Lett..

[5]  R. Reemtsen,et al.  Semi‐Infinite Programming , 1998 .

[6]  Shunsuke Hayashi,et al.  An Explicit Exchange Algorithm For Linear Semi-Infinite Programming Problems With Second-Order Cone Constraints , 2009, SIAM J. Optim..

[7]  J. Faraut,et al.  Analysis on Symmetric Cones , 1995 .

[8]  Masao Fukushima,et al.  A Regularized Explicit Exchange Method for Semi-Infinite Programs with an Infinite Number of Conic Constraints , 2012, SIAM J. Optim..

[9]  J. Frédéric Bonnans,et al.  Perturbation Analysis of Optimization Problems , 2000, Springer Series in Operations Research.

[10]  Chih-Jen Lin,et al.  An Unconstrained Convex Programming Approach to Linear Semi-Infinite Programming , 1998, SIAM J. Optim..

[11]  Marco A. López,et al.  Penalty and Smoothing Methods for Convex Semi-Infinite Programming , 2009, Math. Oper. Res..

[12]  Kenneth O. Kortanek,et al.  A Central Cutting Plane Algorithm for Convex Semi-Infinite Programming Problems , 1993, SIAM J. Optim..

[13]  Yasushi Narushima,et al.  A Smoothing Newton Method with Fischer-Burmeister Function for Second-Order Cone Complementarity Problems , 2011, J. Optim. Theory Appl..

[14]  G. Weber,et al.  RCMARS: Robustification of CMARS with different scenarios under polyhedral uncertainty set , 2011 .

[15]  Liqun Qi,et al.  Semismooth Newton Methods for Solving Semi-Infinite Programming Problems , 2003, J. Glob. Optim..

[16]  Arkadi Nemirovski,et al.  Robust Convex Optimization , 1998, Math. Oper. Res..

[17]  Marco A. López,et al.  Linear semi-infinite programming theory: An updated survey , 2002, Eur. J. Oper. Res..

[18]  Georg Still,et al.  Discretization in semi-infinite programming: the rate of convergence , 2001, Math. Program..

[19]  Dong-Hui Li,et al.  A Smoothing Newton Method for Semi-Infinite Programming , 2004, J. Glob. Optim..

[20]  Dimitri P. Bertsekas,et al.  Convex Analysis and Optimization , 2003 .

[21]  Rembert Reemtsen,et al.  Numerical Methods for Semi-Infinite Programming: A Survey , 1998 .

[22]  Oliver Stein,et al.  Solving Semi-Infinite Optimization Problems with Interior Point Techniques , 2003, SIAM J. Control. Optim..

[23]  Soon-Yi Wu,et al.  On Linear Semi-Infinite Programming Problems: An Algorithm , 1992 .

[24]  Masao Fukushima,et al.  A Combined Smoothing and Regularization Method for Monotone Second-Order Cone Complementarity Problems , 2005, SIAM J. Optim..

[25]  Kenneth O. Kortanek,et al.  Semi-Infinite Programming: Theory, Methods, and Applications , 1993, SIAM Rev..

[26]  Defeng Sun,et al.  Complementarity Functions and Numerical Experiments on Some Smoothing Newton Methods for Second-Order-Cone Complementarity Problems , 2003, Comput. Optim. Appl..

[27]  Marco A. López,et al.  A New Exchange Method for Convex Semi-Infinite Programming , 2010, SIAM J. Optim..

[28]  Masao Fukushima,et al.  Smoothing Functions for Second-Order-Cone Complementarity Problems , 2002, SIAM J. Optim..

[29]  Laurent El Ghaoui,et al.  Robust Optimization , 2021, ICORES.

[30]  Stephen P. Boyd,et al.  Applications of second-order cone programming , 1998 .

[31]  Alexander Shapiro,et al.  First and Second Order Optimality Conditions and Perturbation Analysis of Semi-Infinite Programming Problems , 1998 .

[32]  Zhang Lixia A matrix-splitting method for symmetric affine second-order cone complementarity problems , 2008 .

[33]  Dong-Hui Li,et al.  An iterative method for solving KKT system of the semi-infinite programming , 2005, Optim. Methods Softw..

[34]  Hiroshi Yamashita,et al.  A primal–dual interior point method for nonlinear optimization over second-order cones , 2009, Optim. Methods Softw..

[35]  Masao Fukushima,et al.  An SQP-type algorithm for nonlinear second-order cone programs , 2007, Optim. Lett..

[36]  Ya-Xiang Yuan,et al.  Recent advances in numerical methods for nonlinear equations andnonlinear least squares , 2011 .