Nonlinear magnetohydrodynamic simulation of Tore Supra hollow current profile discharges

Magnetohydrodynamic (MHD) activity often undermines the realization of fully noninductive plasma discharges in the Tore Supra tokamak [J. Jacquinot, Nucl. Fusion 45, S118 (2005)], by producing large degradation of electron energy confinement in the plasma core and the bifurcation to a regime with permanent MHD activity. The nonlinear evolution of MHD modes in these hollow current density profile discharges is studied with the full-scale three-dimensional MHD code XTOR [K. Lerbinger and J.-F. Luciani, J. Comput. Phys. 97, 444 (1991)] and compared with experimental features. Large confinement degradation is predicted when q(0) is close to 2. This derives either from the full reconnection of an unstable double-tearing mode, or from the coupling between a single tearing mode and adjacent stable modes in a region with reduced magnetic shear.

[1]  B. V. Waddell,et al.  Tearing-mode activity for hollow current profiles , 1979 .

[2]  J. Drake,et al.  Linear analysis of the double‐tearing mode , 1980 .

[3]  R. Carrera,et al.  Island bootstrap current modification of the nonlinear dynamics of the tearing mode , 1986 .

[4]  K Lerbinger,et al.  A new semi-implicit method for MHD computations , 1991 .

[5]  R. Fitzpatrick,et al.  Helical temperature perturbations associated with tearing modes in tokamak plasmas , 1995 .

[6]  A. Bondeson,et al.  The CHEASE code for toroidal MHD equilibria , 1996 .

[7]  McGuire,et al.  Off-Axis Sawteeth and Double-Tearing Reconnectionin Reversed Magnetic Shear Plasmas in TFTR. , 1996, Physical review letters.

[8]  W. Houlberg,et al.  Bootstrap current and neoclassical transport in tokamaks of arbitrary collisionality and aspect ratio , 1997 .

[9]  MHD activity in FTU plasmas with reversed magnetic shear , 1997 .

[10]  E. Giovannozzi,et al.  Transport and MHD studies at high Te in FTU tokamak , 1999 .

[11]  Numerical modelling of neoclassical double tearing modes , 1999 .

[12]  Frederic Imbeaux,et al.  Tomography of the fast electron bremsstrahlung emission during lower hybrid current drive on TORE SUPRA , 1999 .

[13]  R. Budny,et al.  Nonlinear evolution of double tearing modes in tokamaks , 2000 .

[14]  G. Kurita,et al.  Nonlinear evolution of double tearing modes , 2000 .

[15]  R. Wolf,et al.  MHD phenomena in reversed shear discharges on ASDEX Upgrade , 2000 .

[16]  F. Imbeaux,et al.  MHD stability of lower hybrid enhanced performance discharges on the Tore Supra tokamak , 2001 .

[17]  E. Joffrin,et al.  MHD stability with strongly reversed magnetic shear in JET , 2002 .

[18]  Hinrich Lütjens,et al.  Linear and nonlinear thresholds of neoclassical tearing modes in tokamaks , 2002 .

[19]  F. Imbeaux,et al.  Simulations of steady-state scenarios for Tore Supra using the CRONOS code , 2003 .

[20]  F. Imbeaux,et al.  New tokamak plasma regime with stationary temperature oscillations. , 2003, Physical review letters.

[21]  Current point formation and magnetic reconnection process in nonlinearly destabilized double tearing modes , 2003 .

[22]  F. Imbeaux,et al.  MHD stability of fully non-inductive discharges in Tore Supra , 2004, physics/0410181.

[23]  Advances in the physics of steady-state plasmas by long pulse experiments on Tore Supra , 2005 .

[24]  Fast growing double tearing modes in a tokamak plasma , 2005, physics/0503068.

[25]  J. Jacquinot,et al.  Steady-state operation of tokamaks: key experiments, integrated modelling and technology developments on Tore Supra , 2005 .

[26]  F. Imbeaux,et al.  Giant oscillations of electron temperature during steady-state operation on Tore Supra. , 2006, Physical review letters.

[27]  F. Imbeaux,et al.  Temperature oscillating regimes in Tore Supra diagnosed by MHD activity , 2006 .