Bottom-up approach for microstructure optimization of sound absorbing materials.

Results from a numerical study examining micro-/macrorelations linking local geometry parameters to sound absorption properties are presented. For a hexagonal structure of solid fibers, the porosity phi, the thermal characteristic length Lambda('), the static viscous permeability k(0), the tortuosity alpha(infinity), the viscous characteristic length Lambda, and the sound absorption coefficient are computed. Numerical solutions of the steady Stokes and electrical equations are employed to provide k(0), alpha(infinity), and Lambda. Hybrid estimates based on direct numerical evaluation of phi, Lambda('), k(0), alpha(infinity), Lambda, and the analytical model derived by Johnson, Allard, and Champoux are used to relate varying (i) throat size, (ii) pore size, and (iii) fibers' cross-section shapes to the sound absorption spectrum. The result of this paper tends to demonstrate the important effect of throat size in the sound absorption level, cell size in the sound absorption frequency selectivity, and fibers' cross-section shape in the porous material weight reduction. In a hexagonal porous structure with solid fibers, the sound absorption level will tend to be maximized with a 48+/-10 microm throat size corresponding to an intermediate resistivity, a 13+/-8 microm fiber radius associated with relatively small interfiber distances, and convex triangular cross-section shape fibers allowing weight reduction.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  Andreas Wiegmann,et al.  Design of acoustic trim based on geometric modeling and flow simulation for non-woven , 2006 .

[3]  C. Perrot,et al.  Periodic unit cell reconstruction of porous media: Application to open-cell aluminum foams , 2007 .

[4]  Denis Lafarge,et al.  Influence of pore roughness on high-frequency permeability , 2003, Poromechanics II.

[5]  Y. Bréchet,et al.  Absorptive properties of rigid porous media: application to face centered cubic sphere packing. , 2005, The Journal of the Acoustical Society of America.

[6]  T. Lu,et al.  Optimized acoustic properties of cellular solids , 1999 .

[7]  J. Allard Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials , 1994 .

[8]  D. Lafarge Propagation du son dans les matériaux poreux à structure rigide saturés par un fluide viscothermique : définition de paramètres géométriques, analogie électromagnétique, temps de relaxation , 1993 .

[9]  Robert J. S. Brown,et al.  Connection between formation factor for electrical resistivity and fluid‐solid coupling factor in Biot’s equations for acoustic waves in fluid‐filled porous media , 1980 .

[10]  Raymond Panneton,et al.  Dynamic viscous permeability of an open-cell aluminum foam: Computations versus experiments , 2008 .

[11]  R. Mahajan,et al.  Thermophysical properties of high porosity metal foams , 2002 .

[12]  Joel Koplik,et al.  Theory of dynamic permeability and tortuosity in fluid-saturated porous media , 1987, Journal of Fluid Mechanics.

[13]  R. Muehleisen,et al.  Measurements and empirical model of the acoustic properties of reticulated vitreous carbon. , 2005, The Journal of the Acoustical Society of America.

[14]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[15]  J. F. Allard,et al.  Propagation of sound in porous media , 1993 .

[16]  D. Lafarge,et al.  Some remarks on the acoustic parameters of sharp-edged porous media , 1998 .

[17]  Torquato Relationship between permeability and diffusion-controlled trapping constant of porous media. , 1990, Physical review letters.

[18]  Raymond Panneton,et al.  Computation of the dynamic thermal dissipation properties of porous media by Brownian motion simulation: Application to an open-cell aluminum foam , 2007 .

[19]  C. Perrot Microstructure et macro-comportement acoustique : approche par reconstruction d'une cellule élémentaire représentative , 2006 .

[20]  Denis Lafarge,et al.  Dynamic compressibility of air in porous structures at audible frequencies , 1997 .

[21]  First-principles calculations of dynamic permeability in porous media. , 1989, Physical review. B, Condensed matter.

[22]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[23]  Salvatore Torquato,et al.  Efficient simulation technique to compute effective properties of heterogeneous media , 1989 .

[24]  Morgan,et al.  Drag forces of porous-medium acoustics. , 1993, Physical review. B, Condensed matter.

[25]  A. Cummings,et al.  Acoustic Properties Of Reticulated Plastic Foams , 1994 .

[26]  Yvan Champoux,et al.  Dynamic tortuosity and bulk modulus in air‐saturated porous media , 1991 .

[27]  Salvatore Torquato,et al.  Simulation of diffusion and trapping in digitized heterogeneous media , 1995 .

[28]  A. Craggs,et al.  Effective densities and resistivities for acoustic propagation in narrow tubes , 1984 .