Machine and Deep Learning applied to galaxy morphology - A comparative study
暂无分享,去创建一个
P. H. Barchi | R. R. de Carvalho | R. R. Rosa | R. Sautter | M. Soares-Santos | B. A. D. Marques | E. Clua | T. S. Gonccalves | C. de S'a-Freitas | T. C. Moura | M. Soares-Santos | R. D. Carvalho | T. Gonçalves | E. Clua | R. Rosa | R. Carvalho | T. Moura | P. Barchi | R. Sautter | B. Marques | C. D. Sá-Freitas | Camila de Sá Freitas | R. R. Rosa | R. R. D. Carvalho | T. S. Gonçalves
[1] Laboratoire d'Astrophysique de Marseille,et al. The UV-Optical Galaxy Color-Magnitude Diagram. I. Basic Properties , 2007, 0706.3938.
[2] R. Nichol,et al. Quantifying the Bimodal Color-Magnitude Distribution of Galaxies , 2003, astro-ph/0309710.
[3] W. M. Wood-Vasey,et al. SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS , 2011, 1101.1529.
[4] M. Huertas-Company,et al. Deep Learning Identifies High-z Galaxies in a Central Blue Nugget Phase in a Characteristic Mass Range , 2018, 1804.07307.
[5] C. Lintott,et al. Galaxy Zoo 2: detailed morphological classifications for 304,122 galaxies from the Sloan Digital Sky Survey , 2013, 1308.3496.
[6] Nour Eldeen M. Khalifa,et al. Deep Galaxy: Classification of Galaxies based on Deep Convolutional Neural Networks , 2017, ArXiv.
[7] Mario A. Storti,et al. MPI for Python , 2005, J. Parallel Distributed Comput..
[8] Jian Sun,et al. Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[9] P. H. Barchi,et al. Improving galaxy morphology with machine learning , 2017, 1705.06818.
[10] G. de Vaucouleurs,et al. Revised Classification of 1500 Bright Galaxies. , 1963 .
[11] Naoki Yasuda,et al. Galaxy Number Counts from the Sloan Digital Sky Survey Commissioning Data , 2001, astro-ph/0105545.
[12] J. J.,et al. The Realm of the Nebulae , 1936, Nature.
[13] S. Kent,et al. CCD surface photometry of field galaxies. II: Bulge/disk decompositions , 1985 .
[14] Ann B. Lee,et al. Global and local two-sample tests via regression , 2018, Electronic Journal of Statistics.
[15] M. Blanton,et al. Physical properties and environments of nearby galaxies , 2009, 0908.3017.
[16] Reinaldo R. Rosa,et al. Generalized complex entropic form for gradient pattern analysis of spatio-temporal dynamics , 2000 .
[17] A. Ribeiro,et al. Investigating the Relation between Galaxy Properties and the Gaussianity of the Velocity Distribution of Groups and Clusters , 2017, 1707.00651.
[18] O. I. Wong,et al. The green valley is a red herring: Galaxy Zoo reveals two evolutionary pathways towards quenching of star formation in early-and late-type galaxies , 2014, 1402.4814.
[19] T. S. Gonccalves,et al. Star formation quenching in green valley galaxies at 0.5 ≲ z ≲ 1.0 and constraints with galaxy morphologies , 2017, 1709.07015.
[20] George Bosilca,et al. Open MPI: Goals, Concept, and Design of a Next Generation MPI Implementation , 2004, PVM/MPI.
[21] P. Barchi,et al. pyGHS: Computing Geometric Histogram Separation in Binomial Proportion Patterns , 2017 .
[22] David Haussler,et al. Occam's Razor , 1987, Inf. Process. Lett..
[23] Aurélien Géron,et al. Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems , 2017 .
[24] Marianne Yasuko Takamiya,et al. Galaxy Structural Parameters: Star Formation Rate and Evolution with Redshift , 1999 .
[25] E. Bertin,et al. SExtractor: Software for source extraction , 1996 .
[26] Stefan Behnel,et al. Cython: The Best of Both Worlds , 2011, Computing in Science & Engineering.
[27] Gutti Jogesh Babu,et al. Statistical Challenges of Astronomy , 2003 .
[28] Max Pettini,et al. The Physical Nature of Rest-UV Galaxy Morphology During the Peak Epoch of Galaxy Formation , 2007 .
[29] C. Lintott,et al. Galaxy Zoo 1: data release of morphological classifications for nearly 900 000 galaxies , 2010, 1007.3265.
[30] Andreas Christmann,et al. Support vector machines , 2008, Data Mining and Knowledge Discovery Handbook.
[31] Fabricio Ferrari,et al. MORFOMETRYKA—A NEW WAY OF ESTABLISHING MORPHOLOGICAL CLASSIFICATION OF GALAXIES , 2015, 1509.05430.
[32] S. J. Press,et al. Applied multivariate analysis : using Bayesian and frequentist methods of inference , 1984 .
[33] Gaël Varoquaux,et al. Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..
[34] San Cristóbal Mateo,et al. The Lack of A Priori Distinctions Between Learning Algorithms , 1996 .
[35] Christopher M. Bishop,et al. Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .
[36] Ofer Lahav,et al. Spectral Classification of Galaxies , 1995 .
[37] Geoffrey E. Hinton,et al. Deep Learning , 2015, Nature.
[38] Ashok N. Srivastava,et al. Advances in Machine Learning and Data Mining for Astronomy , 2012 .
[39] Sander Dieleman,et al. Rotation-invariant convolutional neural networks for galaxy morphology prediction , 2015, ArXiv.
[40] Xindong Wu,et al. 10 Challenging Problems in Data Mining Research , 2006, Int. J. Inf. Technol. Decis. Mak..
[41] J. Ross Quinlan,et al. Induction of Decision Trees , 1986, Machine Learning.
[42] Andrew J. Connolly,et al. Statistics, Data Mining, and Machine Learning in Astronomy , 2014 .
[43] David Schiminovich,et al. Quenching or Bursting: Star Formation Acceleration—A New Methodology for Tracing Galaxy Evolution , 2017, 1705.03514.
[44] C. J.,et al. THE ASYMMETRY OF GALAXIES: PHYSICAL MORPHOLOGY FOR NEARBY AND HIGH-REDSHIFT GALAXIES , .
[45] Michael S. Bernstein,et al. ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.
[46] David T. Bell,et al. Noncompetitive Effects of Giant Foxtail on the Growth of Corn1 , 1972 .
[47] Roberto G. Abraham,et al. A CATALOG OF DETAILED VISUAL MORPHOLOGICAL CLASSIFICATIONS FOR 14,034 GALAXIES IN THE SLOAN DIGITAL SKY SURVEY , 2010, 1001.2401.
[48] R. Nichol,et al. The Dark Energy Survey: more than dark energy - an overview , 2016, 1601.00329.
[49] Sibo Wang,et al. Unsupervised learning and data clustering for the construction of Galaxy Catalogs in the Dark Energy Survey , 2018, Physics Letters B.
[50] C. J. Conselice,et al. New image statistics for detecting disturbed galaxy morphologies at high redshift , 2013, 1306.1238.
[51] V. Petrosian,et al. Surface brightness and evolution of galaxies , 1976 .
[52] Christopher J. Conselice,et al. The Relationship between Stellar Light Distributions of Galaxies and Their Formation Histories , 2003 .
[53] R. Kaszynski,et al. New Concept of Delay Equalized Low-Pass Butterworth Filters , 2006, 2006 IEEE International Symposium on Industrial Electronics.
[54] Santiago,et al. A CATALOG OF VISUAL-LIKE MORPHOLOGIES IN THE 5 CANDELS FIELDS USING DEEP LEARNING , 2015, 1509.05429.
[55] et al,et al. The Luminosity Function of Galaxies from SDSS Commissioning Data , 2000 .
[56] Nandamudi L. Vijaykumar,et al. Gradient pattern analysis of structural dynamics: application to molecular system relaxation , 2003 .
[57] Marti A. Hearst. Trends & Controversies: Support Vector Machines , 1998, IEEE Intell. Syst..
[58] C. Lintott,et al. Galaxy Zoo: morphologies derived from visual inspection of galaxies from the Sloan Digital Sky Survey , 2008, 0804.4483.
[59] H. D. S'anchez,et al. Improving galaxy morphologies for SDSS with Deep Learning , 2017, 1711.05744.
[60] E. Hubble,et al. Realm of the Nebulae , 1936 .
[61] Yann LeCun,et al. Generalization and network design strategies , 1989 .
[62] Reinaldo R. Rosa,et al. CHARACTERIZATION OF ASYMMETRIC FRAGMENTATION PATTERNS IN SPATIALLY EXTENDED SYSTEMS , 1999 .
[63] P. Madau,et al. A NEW NONPARAMETRIC APPROACH TO GALAXY MORPHOLOGICAL CLASSIFICATION , 2003, astro-ph/0311352.
[64] Andrew P. Bradley,et al. The use of the area under the ROC curve in the evaluation of machine learning algorithms , 1997, Pattern Recognit..
[65] Corinna Cortes,et al. Support-Vector Networks , 1995, Machine Learning.
[66] R. D. Carvalho,et al. Gradient pattern analysis applied to galaxy morphology , 2018, 1803.10853.
[67] Karl Glazebrook,et al. The morphologies of distant galaxies. II. Classifications from the Hubble Space Telescope medium deep survey , 1996 .
[68] B. Garilli,et al. zCOSMOS – 10k-bright spectroscopic sample - The bimodality in the galaxy stellar mass function: exploring its evolution with redshift , 2009, 0907.5416.
[69] M. S. Roberts,et al. Physical Parameters Along the Hubble Sequence , 1994 .