Weight distributions of LDPC code ensembles: combinatorics meets statistical physics
暂无分享,去创建一个
[1] Nicolas Sourlas,et al. Spin-glass models as error-correcting codes , 1989, Nature.
[2] S. Franz,et al. Dynamic phase transition for decoding algorithms. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[3] A. Montanari. The glassy phase of Gallager codes , 2001, cond-mat/0104079.
[4] Robert G. Gallager,et al. Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.
[5] M. Mézard,et al. Spin Glass Theory and Beyond , 1987 .
[6] Simon Litsyn,et al. Distance distributions in ensembles of irregular low-density parity-check codes , 2003, IEEE Trans. Inf. Theory.
[7] D. Saad,et al. Critical Noise Levels for LDPC decoding , 2002, cond-mat/0203159.
[8] Judea Pearl,et al. Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.
[9] Alexander Vardy,et al. The intractability of computing the minimum distance of a code , 1997, IEEE Trans. Inf. Theory.
[10] Rüdiger L. Urbanke,et al. The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.
[11] N. Sourlas. Spin Glasses, Error-Correcting Codes and Finite-Temperature Decoding , 1994 .
[12] D Saad,et al. Critical noise levels for low-density parity check decoding. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[13] 大西 仁,et al. Pearl, J. (1988, second printing 1991). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan-Kaufmann. , 1994 .
[14] R. Urbanke,et al. Weight Distribution of Iterative Coding Systems: How Deviant can You be? , 2001 .
[15] David Burshtein,et al. Asymptotic enumeration methods for analyzing LDPC codes , 2004, IEEE Transactions on Information Theory.