Weight distributions of LDPC code ensembles: combinatorics meets statistical physics

The exponent of the weight distribution of low-density parity-check (LDPC) code ensembles through a statistical physics method and a combinatorics method are computed in this paper. We show that the two approaches agree for regular LDPC codes. However, for irregular codes this is not necessarily the case.

[1]  Nicolas Sourlas,et al.  Spin-glass models as error-correcting codes , 1989, Nature.

[2]  S. Franz,et al.  Dynamic phase transition for decoding algorithms. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  A. Montanari The glassy phase of Gallager codes , 2001, cond-mat/0104079.

[4]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[5]  M. Mézard,et al.  Spin Glass Theory and Beyond , 1987 .

[6]  Simon Litsyn,et al.  Distance distributions in ensembles of irregular low-density parity-check codes , 2003, IEEE Trans. Inf. Theory.

[7]  D. Saad,et al.  Critical Noise Levels for LDPC decoding , 2002, cond-mat/0203159.

[8]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[9]  Alexander Vardy,et al.  The intractability of computing the minimum distance of a code , 1997, IEEE Trans. Inf. Theory.

[10]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[11]  N. Sourlas Spin Glasses, Error-Correcting Codes and Finite-Temperature Decoding , 1994 .

[12]  D Saad,et al.  Critical noise levels for low-density parity check decoding. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  大西 仁,et al.  Pearl, J. (1988, second printing 1991). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan-Kaufmann. , 1994 .

[14]  R. Urbanke,et al.  Weight Distribution of Iterative Coding Systems: How Deviant can You be? , 2001 .

[15]  David Burshtein,et al.  Asymptotic enumeration methods for analyzing LDPC codes , 2004, IEEE Transactions on Information Theory.