Optical RAM and integrated optical memories: a survey

The remarkable achievements in the area of integrated optical memories and optical random access memories (RAMs) together with the rapid adoption of optical interconnects in the Datacom and Computercom industries introduce a new perspective for information storage directly in the optical domain, enabling fast access times, increased bandwidth and transparent cooperation with optical interconnect lines. This article reviews state-of-the-art integrated optical memory technologies and optical RAM cell demonstrations describing the physical mechanisms of several key devices along with their performance metrics in terms of their energy, speed and footprint. Novel applications are outlined, concluding with the scaling challenges to be addressed toward allowing light to serve as both a data-carrying and data-storage medium. Integrated optical memory technologies may in the future become an attractive option for storing data in an energy efficient and compact manner. The progress that has been made in the field has now been reviewed by three Greek researchers. Theoni Alexoudi and Nikos Pleros from Aristotle University of Thessaloniki and George Kanellos from University of Bristol describe how the energy consumption, speed and size of optical Random Access Memory (RAM) and flip-flop memory has been transformed over the past 25 years. They report how the footprint of optical memory cells has shrunk from the meter to the sub-micrometer scale, while the energy per bit has now reached 1 fJ/bit and access times have approached a few tens of picoseconds. Schemes based on semiconductor optical amplifiers, micro-ring and micro-disk lasers and photonic crystals are all discussed.

[1]  K. Pagiamtzis,et al.  Content-addressable memory (CAM) circuits and architectures: a tutorial and survey , 2006, IEEE Journal of Solid-State Circuits.

[2]  Jun Sakaguchi,et al.  All-optical memory operation of 980-nm polarization bistable VCSEL for 20-Gb/s PRBS RZ and 40-Gb/s NRZ data signals. , 2010, Optics express.

[3]  J. Marti,et al.  All-optical flip-flop based on a single SOA-MZI , 2005, IEEE Photonics Technology Letters.

[4]  Masaya Notomi,et al.  Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip , 2014, Nature Photonics.

[5]  George T. Kanellos,et al.  Optical RAM Row Access With WDM-Enabled All-Passive Row/Column Decoders , 2014, IEEE Photonics Technology Letters.

[6]  V. P. Kuznetsov,et al.  Er-Doped Electro-Optical Memory Element for 1.5-$\mu$ m Silicon Photonics , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[7]  Polarization-Insensitive All-Optical Flip-Flop Using Tensile-Strained Multiple Quantum Wells , 2008, IEEE Photonics Technology Letters.

[8]  C Peucheret,et al.  All-optical flip-flop operation based on asymmetric active-multimode interferometer bi-stable laser diodes. , 2011, Optics express.

[9]  M. Sorel,et al.  Monolithic All-Optical Set-Reset Flip-Flop Operating at 10 Gb/s , 2010, IEEE Photonics Technology Letters.

[10]  John E. Bowers,et al.  8 × 8 × 40 Gbps fully integrated silicon photonic network on chip , 2016 .

[11]  A. Bogoni,et al.  Erbium–Ytterbium-Doped Fiber-Based Optical Flip-Flop , 2007, IEEE Photonics Technology Letters.

[12]  H. de Waardt,et al.  Fast optical flip‐flop by use of Mach–Zehnder interferometers , 2001 .

[13]  Injection-Locked Flip-Flop Operation of a DBR Laser , 2011, IEEE Photonics Technology Letters.

[14]  Indranil Chakraborty,et al.  Toward Fast Neural Computing using All-Photonic Phase Change Spiking Neurons , 2018, Scientific Reports.

[15]  Masaya Notomi,et al.  All-optical memory based on injection-locking bistability in photonic crystal lasers. , 2011, Optics express.

[16]  Yong Hyub Won,et al.  All-optical flip-flop based on the bistability of injection locked Fabry-Perot laser diode. , 2006, Optics express.

[17]  C. Wright,et al.  Phase-change devices for simultaneous optical-electrical applications , 2017, Scientific Reports.

[18]  Rajeev J. Ram,et al.  Single-chip microprocessor that communicates directly using light , 2015, Nature.

[19]  Jing Wang,et al.  All-Optical Clocked Flip-Flops and Binary Counting Operation Using SOA-Based SR Latch and Logic Gates , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[20]  L. Poti Erbium-Based Photonic Flip-Flop Memories: Model and Experimental Validation , 2008, IEEE Journal of Quantum Electronics.

[21]  Daan Lenstra,et al.  All-optical flip-flop memory based on two coupled polarisation switches , 2002 .

[22]  H. Kawaguchi,et al.  Bit Error Rate Measurements of All-Optical Flip-Flop Operations of a 1.55-μm Polarization Bistable VCSEL , 2014, Journal of Lightwave Technology.

[23]  H. Avramopoulos,et al.  All-Optical T-Flip-Flop Using a Single SOA-MZI-Based Latching Element , 2012, IEEE Photonics Technology Letters.

[24]  M. Čada,et al.  All-optical bistable switching dynamics in 1.55-/spl mu/m two-segment strained multiquantum-well distributed-feedback lasers , 1997 .

[25]  R.S. Tucker,et al.  Slow-light optical buffers: capabilities and fundamental limitations , 2005, Journal of Lightwave Technology.

[26]  W. Pieper,et al.  BER measurements in random access fibre loop optical memory , 1991 .

[27]  Martin T. Hill,et al.  All‐optical flip‐flop based on coupled laser diodes , 1999, physics/9909039.

[28]  Shimeng Yu,et al.  Emerging Memory Technologies: Recent Trends and Prospects , 2016, IEEE Solid-State Circuits Magazine.

[29]  J. Danckaert,et al.  Storing 2 Bits of Information in a Novel Single Semiconductor Microring Laser Memory Cell , 2008, IEEE Photonics Technology Letters.

[30]  P. Maniotis,et al.  Optical Buffering for Chip Multiprocessors: A 16GHz Optical Cache Memory Architecture , 2013, Journal of Lightwave Technology.

[31]  Chen Sun,et al.  Monolithic silicon-photonic platforms in state-of-the-art CMOS SOI processes [Invited]. , 2018, Optics express.

[32]  Harish Bhaskaran,et al.  Photonic non-volatile memories using phase change materials , 2012 .

[33]  E. Tangdiongga,et al.  Optical flip-flop based on two-coupled mode-locked ring lasers , 2005, IEEE Photonics Technology Letters.

[34]  Jian-Jun He,et al.  All-optical flip-flop operation based on bistability in V-cavity laser. , 2016, Optics express.

[35]  N. Pleros,et al.  Ultra-compact III‒V-on-Si photonic crystal memory for flip-flop operation at 5 Gb/s. , 2016, Optics express.

[36]  Vincent Anthony Mabert,et al.  Tutorial and Survey , 1972 .

[37]  Harish Bhaskaran,et al.  Integrated all-photonic non-volatile multi-level memory , 2015, Nature Photonics.

[38]  Yong Hyub Won,et al.  All-optical flip-flop with high on-off contrast ratio using two injection-locked single-mode Fabry-Perot laser diodes. , 2007, Optics express.

[39]  George T. Kanellos,et al.  III–V-on-Si Photonic Crystal Nanocavity Laser Technology for Optical Static Random Access Memories , 2016, IEEE Journal of Selected Topics in Quantum Electronics.

[40]  Kevin J. Miller,et al.  Optical phase change materials in integrated silicon photonic devices: review , 2018, Optical Materials Express.

[41]  Jean-Claude Simon,et al.  Modulation contrast optimization for wavelength conversion of a 20  Gbit/s data signal in hybrid InP/SOI photonic crystal nanocavity. , 2014, Optics letters.

[42]  K A Shore,et al.  1-GHz All-Optical Flip-Flop Operation of Conventional Cylindrical-Shaped Single-Mode VCSELs Under Low-Power Optical Injection , 2010, IEEE Photonics Technology Letters.

[43]  Kohroh Kobayashi,et al.  Investigation of all-optical latching operation of a monolithically integrated SOA-MZI with a feedback loop. , 2012, Optics express.

[44]  P. Maniotis,et al.  Optical Content Addressable Memory Matchline for 2-bit Address Look-Up at 10 Gb/s , 2018, IEEE Photonics Technology Letters.

[45]  Mohab Anis,et al.  Nanometer Variation-Tolerant SRAM: Circuits and Statistical Design for Yield , 2012 .

[46]  An Chen,et al.  Emerging nanoelectronic devices , 2014 .

[47]  C. Vagionas,et al.  Optical RAM and Flip-Flops Using Bit-Input Wavelength Diversity and SOA-XGM Switches , 2012, Journal of Lightwave Technology.

[48]  John E. Bowers,et al.  A comparison of optical buffering technologies , 2008, Opt. Switch. Netw..

[49]  Antonella Bogoni,et al.  All-Optical Variable Buffer Based on Semiconductor Optical Amplifier , 2011, IEEE Journal of Quantum Electronics.

[50]  Harish Bhaskaran,et al.  On-chip photonic synapse , 2017, Science Advances.

[51]  M. Smit,et al.  A fast low-power optical memory based on coupled micro-ring lasers , 2004, Nature.

[52]  S. Barland,et al.  Nonvolatile polarization control of a bistable VCSEL. , 2012, Optics express.

[53]  C. David Wright,et al.  An optoelectronic framework enabled by low-dimensional phase-change films , 2014, Nature.

[54]  H.J.S. Dorren,et al.  Ring-laser optical flip-flop memory with single active element , 2004, IEEE Journal of Selected Topics in Quantum Electronics.

[55]  Geert Morthier,et al.  An ultra-small, low-power all-optical flip-flop memory on a silicon chip , 2010, 2010 Conference on Optical Fiber Communication (OFC/NFOEC), collocated National Fiber Optic Engineers Conference.

[56]  Nikos Pleros,et al.  All-optical 10Gb/s ternary-CAM cell for routing look-up table applications. , 2018, Optics express.

[57]  Xuan Li,et al.  Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality , 2018, Science Advances.

[58]  P. Maniotis,et al.  Integrated Optical Content Addressable Memories (CAM) and Optical Random Access Memories (RAM) for Ultra-Fast Address Look-Up Operations , 2017 .

[59]  Masaya Notomi,et al.  Ultralow bias power all-optical photonic crystal memory realized with systematically tuned L3 nanocavity , 2015 .

[60]  C. Vagionas,et al.  WDM-Enabled Optical RAM at 5 Gb/s Using a Monolithic InP Flip-Flop Chip , 2016, IEEE Photonics Journal.

[61]  Mohab Anis,et al.  Nanometer Variation-Tolerant SRAM , 2013 .

[62]  Geert Morthier,et al.  Fast all-optical flip-flop based on a single distributed feedback laser diode. , 2008, Optics express.

[63]  George T. Kanellos,et al.  Optics in Computing: From Photonic Network-on-Chip to Chip-to-Chip Interconnects and Disintegrated Architectures , 2019, Journal of Lightwave Technology.

[64]  P. Zakynthinos,et al.  Contention Resolution for Burst-Mode Traffic Using Integrated SOA-MZI Gate Arrays and Self-Resetting Optical Flip-Flops , 2008, IEEE Photonics Technology Letters.

[65]  George T. Kanellos,et al.  An Optical Content Addressable Memory Cell for Address Look-Up at 10 Gb/s , 2016, IEEE Photonics Technology Letters.

[66]  Masaya Notomi,et al.  Ultralow-power all-optical RAM based on nanocavities , 2012, Nature Photonics.

[67]  J Sakaguchi,et al.  High Switching-Speed Operation of Optical Memory Based on Polarization Bistable Vertical-Cavity Surface-Emitting Laser , 2010, IEEE Journal of Quantum Electronics.

[68]  Alistair James Poustie,et al.  Packaged and hybrid integrated all-optical flip-flop memory , 2006 .

[69]  Nikos Pleros,et al.  10  Gb/s optical random access memory (RAM) cell. , 2019, Optics letters.

[70]  M. Yao,et al.  SOA Fiber Ring Laser-Based Three-State Optical Memory , 2008, IEEE Photonics Technology Letters.

[71]  P. Maniotis,et al.  A 16GHz optical cache memory architecture for set-associative mapping in chip multiprocessors , 2014, OFC 2014.

[72]  G Puerto,et al.  All-Optical flip-flop operation using a SOA and DFB laser diode optical feedback combination. , 2007, Optics express.

[73]  M. Raburn,et al.  All-optical flip-flop multimode interference bistable laser diode , 2005, IEEE Photonics Technology Letters.

[74]  David A. B. Miller Attojoule Optoelectronics for Low-Energy Information Processing and Communications , 2017, Journal of Lightwave Technology.

[75]  M. Scaffardi,et al.  All-Optical Digital Circuits Exploiting SOA-Based Loop Memories , 2012, IEEE Journal of Selected Topics in Quantum Electronics.

[76]  R. Rhinehart Model and Experimental Validation , 2016 .

[77]  Ivan Andonovic,et al.  Buffering in optical packet switches , 1998 .

[78]  Zheng Guo,et al.  A 23.6-Mb/mm $^{2}$ SRAM in 10-nm FinFET Technology With Pulsed-pMOS TVC and Stepped-WL for Low-Voltage Applications , 2019, IEEE Journal of Solid-State Circuits.

[79]  H. Schulte,et al.  Optical delay line memory , 1967 .

[80]  Kailash Gopalakrishnan,et al.  Overview of candidate device technologies for storage-class memory , 2008, IBM J. Res. Dev..

[81]  Kunle Olukotun,et al.  The Future of Microprocessors , 2005, ACM Queue.

[82]  M. Bohr Nanotechnology goals and challenges for electronic applications , 2002 .

[83]  H. Avramopoulos,et al.  Addressable fiber-loop memory. , 1993, Optics letters.

[84]  生駒 暢之 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC2005) , 2005 .

[85]  Jennifer Hasler,et al.  Finding a roadmap to achieve large neuromorphic hardware systems , 2013, Front. Neurosci..

[86]  Leandros Tassiulas,et al.  An optically-enabled chip-multiprocessor architecture using a single-level shared optical cache memory , 2016, Opt. Switch. Netw..

[87]  N. Pleros,et al.  Memory Speed Analysis of Optical RAM and Optical Flip-Flop Circuits Based on Coupled SOA-MZI Gates , 2012, IEEE Journal of Selected Topics in Quantum Electronics.

[88]  G. Agrawal,et al.  Robust optical control of an optical-amplifier-based flip-flop. , 2000, Optics express.

[89]  A Bogoni,et al.  Optical Dynamic RAM for All-Optical Digital Processing , 2011, IEEE Photonics Technology Letters.

[90]  M. Takenaka,et al.  Realization of all-optical flip-flop using directionally coupled bistable laser diode , 2004, IEEE Photonics Technology Letters.

[91]  D. Petrantonakis,et al.  Optical Static RAM Cell , 2009, IEEE Photonics Technology Letters.

[92]  C. Vagionas,et al.  Dual-Wavelength Bit Input Optical RAM With Three SOA-XGM Switches , 2012, IEEE Photonics Technology Letters.

[93]  Z. Wang,et al.  Theoretical and Experimental Studies on Bistability in Semiconductor Ring Lasers With Two Optical Injections , 2008, IEEE Journal of Selected Topics in Quantum Electronics.

[94]  Marc Sorel,et al.  All-Optical Toggle Flip-Flop Based on Monolithic Semiconductor Ring Laser , 2014, IEEE Photonics Technology Letters.

[95]  T. Katayama,et al.  Experimental Demonstration of Multi-Bit Optical Buffer Memory Using 1.55-$\mu{\hbox {m}}$ Polarization Bistable Vertical-Cavity Surface-Emitting Lasers , 2009, IEEE Journal of Quantum Electronics.

[96]  Afshin S. Daryoush,et al.  A fiber optic recirculating memory loop for radar applications , 1988 .

[97]  Rodney S. Tucker,et al.  Storage-bit-rate product in slow-light optical buffers , 2005 .

[98]  Daan Lenstra,et al.  Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories , 2003 .

[99]  C. David Wright,et al.  Fast and reliable storage using a 5  bit, nonvolatile photonic memory cell , 2018, Optica.

[100]  T. Alexoudi,et al.  Optical Cache Memory Peripheral Circuitry: Row and Column Address Selectors for Optical Static RAM Banks , 2013, Journal of Lightwave Technology.

[101]  Nathan Youngblood,et al.  Device‐Level Photonic Memories and Logic Applications Using Phase‐Change Materials , 2018, Advanced materials.