Comparative analysis of selected classifiers in posterior cruciate ligaments computer aided diagnosis

*e-mail: piotr.zarychta@polsl.pl Abstract. A study on computer aided diagnosis of posterior cruciate ligaments is presented in this paper. The diagnosis relies on T1-weighted magnetic resonance imaging. During the image analysis stage, the ligament region is automatically detected, localized, and extracted using fuzzy segmentation methods. Eight geometric features are defined for the ligament object. With a clinical reference database containing 107 cases of both healthy and pathological cases, a Fisher linear discriminant is used to select 4 most distinctive features. At the classification stage we employ five different soft computing classifiers to evaluate the feature vector suitability for the computerized ligament diagnosis. Among the classifiers we introduce and specify the particle swarm optimization based Sugeno-type fuzzy inference system and compare its performance to other established classification systems. The classification accuracy metrics: sensitivity, specificity, and Dice index all exceed 90% for each classifier under consideration, indicating high level of the proposed feature vector relevance in the computer aided ligaments diagnosis.

[1]  F. Buendía Gómez,et al.  Imaging of posterior cruciate ligament ( PCL ) reconstruction : normal postsurgical appearance and complications , 2013 .

[2]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[3]  Pawel Badura,et al.  Radiological Atlas for Patient Specific Model Generation , 2014 .

[4]  Piotr Zarychta ACL and PCL of the knee joint in the computer diagnostics , 2014, 2014 Proceedings of the 21st International Conference Mixed Design of Integrated Circuits and Systems (MIXDES).

[5]  Ewa Pietka,et al.  Watershed based intelligent scissors , 2015, Comput. Medical Imaging Graph..

[6]  Gillian Dobbie,et al.  Research on particle swarm optimization based clustering: A systematic review of literature and techniques , 2014, Swarm Evol. Comput..

[7]  Piotr Zarychta,et al.  Anterior and Posterior Cruciate Ligament – Extraction and 3D Visualization , 2010 .

[8]  Joanna Czajkowska,et al.  A new fuzzy support vectors machine for biomedical data classification , 2008, 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[9]  Marcie Harris-Hayes,et al.  Variables associated with return to sport following anterior cruciate ligament reconstruction: a systematic review , 2013, British Journal of Sports Medicine.

[10]  Mark M. Millonas,et al.  Swarms, Phase Transitions, and Collective Intelligence , 1993, adap-org/9306002.

[11]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[12]  Mauricio A. Álvarez,et al.  Optimal sampling frequency in wavelet-based signal feature extraction using particle swarm optimization , 2013, 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[13]  Marcin Grzegorzek,et al.  Multi-scale textural feature extraction and particle swarm optimization based model selection for false positive reduction in mammography , 2015, Comput. Medical Imaging Graph..

[14]  Piotr Zarychta Posterior Cruciate Ligament - 3D Visualization , 2008, Computer Recognition Systems 2.

[15]  Pawel Badura,et al.  3D Fuzzy Liver Tumor Segmentation , 2012, ITIB.

[16]  Roberto Schirru,et al.  Applying particle swarm optimization algorithm for tuning a neuro-fuzzy inference system for sensor monitoring , 2009 .

[17]  M. Young The technical writer's handbook : writing with style and clarity , 1989 .

[18]  Ewa Pietka,et al.  Image Clustering with Median and Myriad Spatial Constraint Enhanced FCM , 2005, CORES.

[19]  Braden C Fleming,et al.  Rehabilitation after Anterior Cruciate Ligament Reconstruction: A Prospective, Randomized, Double-Blind Comparison of Programs Administered over 2 Different Time Intervals , 2005, The American journal of sports medicine.

[20]  Leonardo Metsavaht,et al.  Injuries to posterolateral corner of the knee: a comprehensive review from anatomy to surgical treatment☆ , 2014, Revista brasileira de ortopedia.

[21]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[22]  Ling Chen,et al.  Outcome of revision anterior cruciate ligament reconstruction: a systematic review. , 2012, The Journal of bone and joint surgery. American volume.

[23]  A. Alcalá-Galiano,et al.  Imaging of posterior cruciate ligament (PCL) reconstruction: normal postsurgical appearance and complications , 2014, Skeletal Radiology.

[24]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[25]  R. Wright,et al.  Rehabilitation after anterior cruciate ligament reconstruction: a systematic review. , 2012, The Journal of bone and joint surgery. American volume.

[26]  Frank R. Noyes,et al.  Noyes' Knee Disorders: Surgery, Rehabilitation, Clinical Outcomes , 2016 .

[27]  T. Wickiewicz,et al.  Posterior Cruciate Ligament , 2012, The American journal of sports medicine.

[28]  Pawel Badura,et al.  Swarm Intelligence Approach to 3D Medical Image Segmentation , 2016, ITIB.

[29]  Sylvain Arlot,et al.  A survey of cross-validation procedures for model selection , 2009, 0907.4728.

[30]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[31]  Scott Tashman,et al.  Anatomic anterior cruciate ligament reconstruction , 2015 .

[32]  R. Marx,et al.  Postoperative Rehabilitation After Posterior Cruciate Ligament Reconstruction and Combined Posterior Cruciate Ligament Reconstruction-Posterior Lateral Corner Surgery , 2015 .

[33]  Piotr Zarychta Cruciate Ligaments of the Knee Joint in the Computer Analysis , 2014 .

[34]  Philip Glasgow Simplicity: the ultimate sophistication , 2014, British Journal of Sports Medicine.

[35]  Piotr Zarychta,et al.  The Importance of the Features of the Posterior Cruciate Ligament in Diagnosis , 2016, ITIB.

[36]  L. V. Valen,et al.  Human Anatomy , 1899, Nature.

[37]  M. Engelhardt,et al.  [Rehabilitation after anterior cruciate ligament reconstruction]. , 2002, Der Orthopade.

[38]  Hugo Jair Escalante,et al.  Acute leukemia classification by ensemble particle swarm model selection , 2012, Artif. Intell. Medicine.

[39]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[40]  P. Zarychta Features extraction in anterior and posterior cruciate ligaments analysis , 2015, Comput. Medical Imaging Graph..