Pseudorandom number generation by p-adic ergodic transformations: an addendum

The paper study counter-dependent pseudorandom number gen- erators based on m-variate (m > 1) ergodic mappings of the space of 2-adic integers Z2. The sequence of internal states of these generators is defined by the recurrence law xi+1 = H B i (xi) mod 2 n , whereas their output sequence is zi = F B i (xi) mod 2 n; here xj, zj are m-dimensional vectors over Z2. It is shown how the results obtained for a univariate case could be extended to a multivariate case.

[1]  Richard P. Brent,et al.  Factorization of the tenth Fermat number , 1999, Math. Comput..

[2]  Alfred Menezes,et al.  Handbook of Applied Cryptography , 2018 .

[3]  Adi Shamir,et al.  Guaranteeing the Diversity of Number Generators , 2001, Inf. Comput..

[4]  R. Rivest Permutation Polynomials Modulo 2w , 2001 .

[5]  Vladimir Anashin,et al.  Uniformly distributed sequences of p-adic integers, II , 2002, math/0209407.

[6]  Lauwerens Kuipers,et al.  Uniform distribution of sequences , 1974 .

[7]  Adi Shamir,et al.  A New Class of Invertible Mappings , 2002, CHES.

[8]  V. S. Anachin Uniformly distributed sequences ofp-adic integers , 1994 .

[9]  K. Mahler p-adic numbers and their functions , 1981 .

[10]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[11]  Vladimir Anashin,et al.  Uniformly distributed sequences in computer algebra or how to construct program generators of random numbers , 1998 .

[12]  Donald Ervin Knuth,et al.  The Art of Computer Programming, Volume II: Seminumerical Algorithms , 1970 .

[13]  H. Weyl Permutation Groups , 2022 .

[14]  Alan M. Frieze,et al.  Reconstructing Truncated Integer Variables Satisfying Linear Congruences , 1988, SIAM J. Comput..

[15]  Vladimir Anashin Solvable groups with operators and commutative rings having transitive polynomials , 1982 .

[16]  K. Conrad,et al.  Finite Fields , 2018, Series and Products in the Development of Mathematics.

[17]  Adi Shamir,et al.  New Cryptographic Primitives Based on Multiword T-Functions , 2004, FSE.

[18]  E. Brickell,et al.  Cryptanalysis: a survey of recent results , 1988, Proc. IEEE.

[19]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[20]  Shujun Li,et al.  Permutation Polynomials modulo m , 2005, ArXiv.

[21]  Oded Goldreich,et al.  Foundations of Cryptography: Basic Tools , 2000 .

[22]  Igor E. Shparlinski,et al.  Recurrence Sequences , 2003, Mathematical surveys and monographs.

[23]  Hugo Krawczyk How to Predict Congruential Generators , 1992, J. Algorithms.

[24]  Donald E. Knuth,et al.  The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .

[25]  N. Koblitz p-adic Numbers, p-adic Analysis, and Zeta-Functions , 1977 .

[26]  M. V. Larin,et al.  Transitive polynomial transformations of residue class rings , 2002 .

[27]  Adi Shamir,et al.  Cryptographic Applications of T-Functions , 2003, Selected Areas in Cryptography.