Comparing different stimulus configurations for population receptive field mapping in human fMRI

Population receptive field (pRF) mapping is a widely used approach to measuring aggregate human visual receptive field properties by recording non-invasive signals using functional MRI. Despite growing interest, no study to date has systematically investigated the effects of different stimulus configurations on pRF estimates from human visual cortex. Here we compared the effects of three different stimulus configurations on a model-based approach to pRF estimation: size-invariant bars and eccentricity-scaled bars defined in Cartesian coordinates and traveling along the cardinal axes, and a novel simultaneous “wedge and ring” stimulus defined in polar coordinates, systematically covering polar and eccentricity axes. We found that the presence or absence of eccentricity scaling had a significant effect on goodness of fit and pRF size estimates. Further, variability in pRF size estimates was directly influenced by stimulus configuration, particularly for higher visual areas including V5/MT+. Finally, we compared eccentricity estimation between phase-encoded and model-based pRF approaches. We observed a tendency for more peripheral eccentricity estimates using phase-encoded methods, independent of stimulus size. We conclude that both eccentricity scaling and polar rather than Cartesian stimulus configuration are important considerations for optimal experimental design in pRF mapping. While all stimulus configurations produce adequate estimates, simultaneous wedge and ring stimulation produced higher fit reliability, with a significant advantage in reduced acquisition time.

[1]  H Bridge,et al.  Mapping the visual brain: how and why , 2011, Eye.

[2]  D. Hubel,et al.  Ferrier lecture - Functional architecture of macaque monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[3]  Masahiro Takei,et al.  Human resource development and visualization , 2009, J. Vis..

[4]  Steven Yantis,et al.  Efficient acquisition of human retinotopic maps , 2003, Human brain mapping.

[5]  Brian Barton,et al.  Visual cortex in aging and Alzheimer's disease: changes in visual field maps and population receptive fields , 2012, Front. Psychol..

[6]  J. Rovamo,et al.  An estimation and application of the human cortical magnification factor , 2004, Experimental Brain Research.

[7]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[8]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[9]  E. DeYoe,et al.  Mapping striate and extrastriate visual areas in human cerebral cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[10]  John H. R. Maunsell,et al.  Visual processing in monkey extrastriate cortex. , 1987, Annual review of neuroscience.

[11]  Robert Turner,et al.  Image Distortion Correction in fMRI: A Quantitative Evaluation , 2002, NeuroImage.

[12]  H. Railo,et al.  Retinotopic Maps, Spatial Tuning, and Locations of Human Visual Areas in Surface Coordinates Characterized with Multifocal and Blocked fMRI Designs , 2012, PloS one.

[13]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[14]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[15]  Jonathan Winawer,et al.  Imaging retinotopic maps in the human brain , 2011, Vision Research.

[16]  Antony B. Morland,et al.  Population Receptive Field Dynamics in Human Visual Cortex , 2012, PloS one.

[17]  S. Dumoulin,et al.  The Relationship between Cortical Magnification Factor and Population Receptive Field Size in Human Visual Cortex: Constancies in Cortical Architecture , 2011, The Journal of Neuroscience.

[18]  A. T. Smith,et al.  Estimating receptive field size from fMRI data in human striate and extrastriate visual cortex. , 2001, Cerebral cortex.

[19]  Kerry Hourigan,et al.  Wake transition of a rolling sphere , 2011, J. Vis..

[20]  F. D. Lange,et al.  Shape Perception Simultaneously Up- and Downregulates Neural Activity in the Primary Visual Cortex , 2014, Current Biology.

[21]  Karl J. Friston,et al.  Spatial registration and normalization of images , 1995 .

[22]  Adrian T. Lee,et al.  fMRI of human visual cortex , 1994, Nature.

[23]  B. Wandell,et al.  Compressive spatial summation in human visual cortex. , 2013, Journal of neurophysiology.

[24]  John H. R. Maunsell,et al.  The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability , 1984, Vision Research.

[25]  Martijn Barendregt,et al.  Contour extracting networks in early extrastriate cortex. , 2014, Journal of vision.

[26]  S. Dumoulin,et al.  Modeling center-surround configurations in population receptive fields using fMRI. , 2012, Journal of vision.

[27]  B. Wandell,et al.  Visual Field Maps in Human Cortex , 2007, Neuron.

[28]  Stephen V. David,et al.  Parametric reverse correlation reveals spatial linearity of retinotopic human V1 BOLD response , 2004, NeuroImage.

[29]  A. Cowey,et al.  Human cortical magnification factor and its relation to visual acuity , 2004, Experimental Brain Research.

[30]  P. Laurinen,et al.  Surround suppression and facilitation in the fovea: very long-range spatial interactions in contrast perception. , 2010, Journal of vision.

[31]  M. Sereno,et al.  Retinotopy and Attention in Human Occipital, Temporal, Parietal, and Frontal Cortex , 2008 .

[32]  Nao Ninomiya,et al.  The 10th anniversary of journal of visualization , 2007, J. Vis..

[33]  J. Victor,et al.  Population encoding of spatial frequency, orientation, and color in macaque V1. , 1994, Journal of neurophysiology.

[34]  Danny Keogan,et al.  Distributed hierarchical processing , 2002, Photomask Japan.

[35]  Brian A. Wandell,et al.  Quick Retinotopic Mapping With Composite Stimulus , 2005 .

[36]  Brian A. Wandell,et al.  Plasticity and Stability of the Visual System in Human Achiasma , 2012, Neuron.

[37]  Karl J. Friston,et al.  Unified segmentation , 2005, NeuroImage.

[38]  A. Dale,et al.  Functional Analysis of V3A and Related Areas in Human Visual Cortex , 1997, The Journal of Neuroscience.

[39]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[40]  G. Glover,et al.  Retinotopic organization in human visual cortex and the spatial precision of functional MRI. , 1997, Cerebral cortex.

[41]  B. Wandell,et al.  Visual field maps, population receptive field sizes, and visual field coverage in the human MT+ complex. , 2009, Journal of neurophysiology.

[42]  S. Zeki Uniformity and diversity of structure and function in rhesus monkey prestriate visual cortex. , 1978, The Journal of physiology.

[43]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[44]  Brian A. Wandell,et al.  Population receptive field estimates in human visual cortex , 2008, NeuroImage.

[45]  Linda Henriksson,et al.  Multifocal fMRI mapping of visual cortical areas , 2005, NeuroImage.

[46]  Ione Fine,et al.  Minimizing biases in estimating the reorganization of human visual areas with BOLD retinotopic mapping. , 2013, Journal of vision.

[47]  D. Heeger,et al.  Two Retinotopic Visual Areas in Human Lateral Occipital Cortex , 2006, The Journal of Neuroscience.

[48]  R. Weismantel Who ? What ? When ? Where ? How ? and Why ? , 2012 .

[49]  Elaine J. Anderson,et al.  Perceptual load affects spatial tuning of neuronal populations in human early visual cortex , 2014, Current Biology.

[50]  Karl J. Friston,et al.  Modelling Geometric Deformations in Epi Time Series , 2022 .

[51]  Georgios A Keliris,et al.  Population receptive field analysis of the primary visual cortex complements perimetry in patients with homonymous visual field defects , 2014, Proceedings of the National Academy of Sciences.

[52]  J. V. Haxby,et al.  Spatial Pattern Analysis of Functional Brain Images Using Partial Least Squares , 1996, NeuroImage.

[53]  Frans W Cornelissen,et al.  Large-scale remapping of visual cortex is absent in adult humans with macular degeneration , 2011, Nature Neuroscience.

[54]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[55]  Kristina M. Ropella,et al.  Comparison of randomized multifocal mapping and temporal phase mapping of visual cortex for clinical use☆ , 2013, NeuroImage: Clinical.

[56]  D. Schwarzkopf,et al.  Larger Extrastriate Population Receptive Fields in Autism Spectrum Disorders , 2014, The Journal of Neuroscience.

[57]  B. Wandell,et al.  Mapping Hv4 and Ventral Occipital Cortex: the Venous Eclipse , 2022 .

[58]  R. Turner,et al.  Characterizing Evoked Hemodynamics with fMRI , 1995, NeuroImage.

[59]  Karl J. Friston,et al.  Spatial transformation of images , 1997 .

[60]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[61]  Geoffrey M. Boynton,et al.  Efficient Design of Event-Related fMRI Experiments Using M-Sequences , 2002, NeuroImage.

[62]  Ruey-Song Huang,et al.  Bottom-up Retinotopic Organization Supports Top-down Mental Imagery , 2013, The open neuroimaging journal.

[63]  Gary F. Egan,et al.  Functional size of human visual area V1: A neural correlate of top–down attention , 2014, NeuroImage.

[64]  Masaaki Kawahashi,et al.  Renovation of Journal of Visualization , 2010, J. Vis..