Spatio-temporal dynamics in syntopy are driven by variability in rangeland conditions

[1]  R. Seager,et al.  Megadroughts in the Common Era and the Anthropocene , 2022, Nature Reviews Earth & Environment.

[2]  Shawn P. Espinosa,et al.  Sensitivity to weather drives Great Basin mesic resources and Greater Sage-Grouse productivity , 2022, Ecological Indicators.

[3]  M. Strimas‐Mackey,et al.  Interspecific competition limits bird species’ ranges in tropical mountains , 2022, Science.

[4]  Z. Saqib,et al.  MaxEnt Modelling and Impact of Climate Change on Habitat Suitability Variations of Economically Important Chilgoza Pine (Pinus gerardiana Wall.) in South Asia , 2022, Forests.

[5]  Jin Yao,et al.  Mechanisms and drivers of alternative shrubland states , 2022, Ecosphere.

[6]  A. P. Williams,et al.  Rapid intensification of the emerging southwestern North American megadrought in 2020–2021 , 2022, Nature Climate Change.

[7]  O. Sala,et al.  Woody-plant encroachment: Precipitation, herbivory and grass-competition interact to affect shrub recruitment. , 2022, Ecological applications : a publication of the Ecological Society of America.

[8]  L. Bosso,et al.  Expanding or shrinking? range shifts in wild ungulates under climate change in Pamir-Karakoram mountains, Pakistan , 2021, PloS one.

[9]  S. Fuhlendorf,et al.  Land enrolled in the Conservation Reserve Program supports roosting ecology of the lesser prairie-chicken , 2021, Global Ecology and Conservation.

[10]  A. P. Williams,et al.  Projected Changes to Hydroclimate Seasonality in the Continental United States , 2021, Earth's Future.

[11]  D. Twidwell,et al.  Generalist bird exhibits site‐dependent resource selection , 2021, Ecology and evolution.

[12]  M. Papes,et al.  Variable precipitation leads to dynamic range limits of forest songbirds at a forest‐grassland ecotone , 2021, Ecology and evolution.

[13]  S. Víctor,et al.  Artificial illumination influences niche segregation in bats. , 2021, Environmental pollution.

[14]  Alexej P. K. Sirén,et al.  Abiotic stress and biotic factors mediate range dynamics on opposing edges , 2021, Journal of Biogeography.

[15]  M. I. H. Putra,et al.  Maximum entropy model: Estimating the relative suitability of cetacean habitat in the northern Savu Sea, Indonesia , 2020 .

[16]  Sarah E. McCord,et al.  Improving Landsat predictions of rangeland fractional cover with multitask learning and uncertainty , 2020, bioRxiv.

[17]  L. Ancillotto,et al.  Modelling risks posed by wind turbines and power lines to soaring birds: the black stork (Ciconia nigra) in Italy as a case study , 2020, Biodiversity and Conservation.

[18]  D. Gravel,et al.  Co-occurrence is not evidence of ecological interactions. , 2020, Ecology letters.

[19]  M. Papes,et al.  Using aerial surveys and citizen science to create species distribution models for an imperiled grouse , 2019, Biodiversity and Conservation.

[20]  Alexej P. K. Sirén,et al.  Interactive range‐limit theory (iRLT): An extension for predicting range shifts , 2019, The Journal of animal ecology.

[21]  J. Elith Species Distribution Modeling , 2019, Ecology.

[22]  S. Fuhlendorf,et al.  Behavioral modifications lead to disparate demographic consequences in two sympatric species , 2019, Ecology and evolution.

[23]  S. Niu,et al.  When does extreme drought elicit extreme ecological responses? , 2019, Journal of Ecology.

[24]  L. Ancillotto,et al.  The Balkan long-eared bat (Plecotus kolombatovici) occurs in Italy – first confirmed record and potential distribution , 2019, Mammalian Biology.

[25]  David N. Bucklin,et al.  Sympatry or syntopy? Investigating drivers of distribution and co‐occurrence for two imperiled sea turtle species in Gulf of Mexico neritic waters , 2018, Ecology and evolution.

[26]  Jeremy D. Maestas,et al.  Innovation in rangeland monitoring: annual, 30 m, plant functional type percent cover maps for U.S. rangelands, 1984–2017 , 2018, Ecosphere.

[27]  S. Fuhlendorf,et al.  Impact of an agri-environmental scheme on landscape patterns , 2018 .

[28]  E. O. Garton,et al.  Lesser prairie‐chicken population forecasts and extinction risks: An evaluation 5 years post–Catastrophic drought , 2017 .

[29]  D. Dahlgren,et al.  Extreme climatic events constrain space use and survival of a ground‐nesting bird , 2017, Global change biology.

[30]  K. U. Karanth,et al.  Spatio-temporal interactions facilitate large carnivore sympatry across a resource gradient , 2017, Proceedings of the Royal Society B: Biological Sciences.

[31]  D. Dahlgren,et al.  Does the presence of Oil and gas infrastructure potentially increase risk of harvest in northern bobwhite? , 2016, Wildlife Biology.

[32]  G. Niemi,et al.  A synthesis of species interactions, metacommunities, and the conservation of avian diversity in hemiboreal and boreal forests , 2016 .

[33]  L. McDonald,et al.  Multiscale occupancy modeling provides insights into range-wide conservation needs of Lesser Prairie-Chicken (Tympanuchus pallidicinctus) , 2016, The Condor.

[34]  Beth E. Ross,et al.  The relative contribution of climate to changes in lesser prairie‐chicken abundance , 2016 .

[35]  Liba Pejchar,et al.  Improving habitat for game animals has mixed consequences for biodiversity conservation , 2016 .

[36]  Thomas A. Groen,et al.  Transferability of species distribution models: The case of Phytophthora cinnamomi in Southwest Spain and Southwest Australia , 2016 .

[37]  S. Fuhlendorf,et al.  Thermal patterns constrain diurnal behavior of a ground-dwelling bird , 2015 .

[38]  R. Clarke,et al.  Climate drying amplifies the effects of land-use change and interspecific interactions on birds , 2015, Landscape Ecology.

[39]  D. M. Leslie,et al.  Looking beyond rare species as umbrella species: Northern Bobwhites (Colinus virginianus) and conservation of grassland and shrubland birds , 2015 .

[40]  B. Cook,et al.  Unprecedented 21st century drought risk in the American Southwest and Central Plains , 2015, Science Advances.

[41]  J. C. Pitman,et al.  Range‐wide population size of the lesser prairie‐chicken: 2012 and 2013 , 2014 .

[42]  Robert P. Anderson,et al.  Making better Maxent models of species distributions: complexity, overfitting and evaluation , 2014 .

[43]  M. Papes,et al.  Refining Climate Change Projections for Organisms with Low Dispersal Abilities: A Case Study of the Caspian Whip Snake , 2014, PloS one.

[44]  Daniel H. Thornton,et al.  Evidence for large-scale effects of competition: niche displacement in Canada lynx and bobcat , 2013, Proceedings of the Royal Society B: Biological Sciences.

[45]  K. Marvel,et al.  Identifying external influences on global precipitation , 2013, Proceedings of the National Academy of Sciences.

[46]  D. McGranahan,et al.  Inconsistent outcomes of heterogeneity-basedmanagement underscore importance of matchingevaluation to conservation objectives , 2013 .

[47]  M. White,et al.  Selecting thresholds for the prediction of species occurrence with presence‐only data , 2013 .

[48]  D. Sparling,et al.  Influence of conservation reserve program mid‐contract management and landscape composition on northern bobwhite in tall fescue monocultures , 2012 .

[49]  Todd Jobe,et al.  Why Do Species Co-Occur? A Test of Alternative Hypotheses Describing Abiotic Differences in Sympatry versus Allopatry Using Spadefoot Toads , 2012, PloS one.

[50]  S. Fuhlendorf,et al.  Topoedaphic Variability and Patch Burning in Sand Sagebrush Shrubland , 2011 .

[51]  D. Engle,et al.  Ungulate preference for burned patches reveals strength of fire–grazing interaction , 2011, Ecology and evolution.

[52]  P. Reich,et al.  High plant diversity is needed to maintain ecosystem services , 2011, Nature.

[53]  Robert P. Anderson,et al.  Species-specific tuning increases robustness to sampling bias in models of species distributions: An implementation with Maxent , 2011 .

[54]  Teja Tscharntke,et al.  Landscape-moderated biodiversity effects of agri-environmental management: a meta-analysis , 2011, Proceedings of the Royal Society B: Biological Sciences.

[55]  M. Kearney,et al.  Declining body size: a third universal response to warming? , 2011, Trends in ecology & evolution.

[56]  Lenore Fahrig,et al.  Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. , 2011, Ecology letters.

[57]  Trevor Hastie,et al.  A statistical explanation of MaxEnt for ecologists , 2011 .

[58]  Richard E. Glor,et al.  ENMTools: a toolbox for comparative studies of environmental niche models , 2010 .

[59]  R. Pringle,et al.  Spatial dynamics of nesting behavior: lizards shift microhabitats to construct nests with beneficial thermal properties. , 2009, Ecology.

[60]  R. Sage,et al.  Effects of pheasant management on vegetation and birds in lowland woodlands , 2007 .

[61]  J. C. Pitman,et al.  Niche Partitioning by Lesser Prairie-chicken Tympanuchus pallidicinctus and Ring-necked Pheasant Phasianus colchicus in Southwestern Kansas , 2007 .

[62]  B. Sandercock,et al.  Age-Specific Survival and Probable Causes of Mortality in Female Lesser Prairie-Chickens , 2007 .

[63]  Sutherland,et al.  Statewide Monitoring of the Mesoscale Environment: A Technical Update on the Oklahoma Mesonet , 2007 .

[64]  D. Craighead,et al.  EVALUATION OF TECHNIQUES FOR ATTACHING TRANSMITTERS TO COMMON RAVEN NESTLINGS , 2007 .

[65]  P. Reich,et al.  Biodiversity and ecosystem stability in a decade-long grassland experiment , 2006, Nature.

[66]  Robert P. Anderson,et al.  Maximum entropy modeling of species geographic distributions , 2006 .

[67]  Jean-Michel Roberge,et al.  Usefulness of the Umbrella Species Concept as a Conservation Tool , 2004 .

[68]  L. Fahrig Effects of Habitat Fragmentation on Biodiversity , 2003 .

[69]  T. Caro,et al.  Umbrella species: critique and lessons from East Africa , 2003 .

[70]  Shahid Naeem,et al.  ECOSYSTEM CONSEQUENCES OF BIODIVERSITY LOSS: THE EVOLUTION OF A PARADIGM , 2002 .

[71]  D. Briske,et al.  Herbaceous vegetation change in variable rangeland environments: The relative contribution of grazing and climatic variability , 2001 .

[72]  Jeffrey J. Lusk,et al.  Northern bobwhite (Colinus virginianus) abundance in relation to yearly weather and long-term climate patterns , 2001 .

[73]  T. Dayan,et al.  The dietary basis for temporal partitioning: food habits of coexisting Acomys species , 1999, Oecologia.

[74]  J. Lancaster,et al.  Assembly rules within a contingent ecology , 1999 .

[75]  R. Lambeck,et al.  Focal Species: a Multi-species Umbrella for Nature Conservation Focal Species for Nature Conservation Lambeck , 2022 .

[76]  Michael D. Eilts,et al.  The Oklahoma Mesonet: A Technical Overview , 1995 .

[77]  W. Parton,et al.  Primary Production of the Central Grassland Region of the United States , 1988 .

[78]  S. Anderson,et al.  Foraging guilds of North American birds , 1985 .

[79]  H. Reinert,et al.  Habitat Varition Within Sympatric Snake Populations , 1984 .

[80]  Douglas H. Johnson THE COMPARISON OF USAGE AND AVAILABILITY MEASUREMENTS FOR EVALUATING RESOURCE PREFERENCE , 1980 .

[81]  W. Sousa Disturbance in Marine Intertidal Boulder Fields: The Nonequilibrium Maintenance of Species Diversity , 1979 .

[82]  T. Schoener Competition and the niche , 1977 .

[83]  Thomas W. Schoener,et al.  Resource Partitioning in Ecological Communities , 1974, Science.

[84]  J. Gower A General Coefficient of Similarity and Some of Its Properties , 1971 .

[85]  H. Campbell Seasonal Precipitation and Scaled Quail in Eastern New Mexico , 1968 .

[86]  L. R. Rivas A Reinterpretation of the Concepts “Sympatric” and “Allopatric” with Proposal of the Additional Terms “Syntopic” and “Allotopic” , 1964 .

[87]  R. Macarthur ON THE RELATIVE ABUNDANCE OF BIRD SPECIES. , 1957, Proceedings of the National Academy of Sciences of the United States of America.

[88]  Michael E. Byrne,et al.  Using multiple data sources to investigate foraging niche partitioning in sympatric obligate avian scavengers , 2019, Ecosphere.

[89]  Dirac Twidwell,et al.  Heterogeneity as the Basis for Rangeland Management , 2017 .

[90]  S. Schemnitz Scaled Quail Habitats Revisited - Oklahoma Panhandle , 2017, Quail.

[91]  Damaris Zurell,et al.  Collinearity: a review of methods to deal with it and a simulation study evaluating their performance , 2013 .

[92]  Jonathan M. Chase,et al.  Trade‐offs in community ecology: linking spatial scales and species coexistence , 2004 .

[93]  X. Wu,et al.  Differential influence of weather on regional quail abundance in Texas , 2001 .

[94]  F. S. Guthery,et al.  Heat loads on reproducing bobwhites in the semiarid subtropics , 2001 .

[95]  J. Herkert THE INFLUENCE OF THE CRP ON GRASSHOPPER SPARROW POPULATION TRENDS IN THE MID-CONTINENTAL UNITED STATES , 1998 .

[96]  F. Stormer Night-roosting habitat of scaled quail , 1984 .