Estimating surface solar irradiance from satellites: Past, present, and future perspectives

Abstract Surface Solar Irradiance (SSI) is a key parameter dictating surface-atmosphere interactions, driving radiative, hydrological, and land surface processes, and can thus impinge greatly upon weather and climate. It is thereby a prerequisite of many studies and applications. Estimating SSI from satellites began in the 1960s, and is currently the principal way to map SSI spatiotemporal distributions from regional to global scales. Starting from an overview of historical studies carried out in the past several decades, this paper reviews the progresses made in methodology, validation, and products over these years. First, the requirements of SSI in various studies or applications are presented along with the theoretical background of SSI satellite estimation. Methods to estimate SSI from satellites are then summarized as well as their advantages and limitations. Validations of satellite-based SSI on two typical spatial scales are discussed followed by a brief description of existing products and their accuracies. Finally, the challenges faced by current SSI satellite estimation are analyzed, and possible improvements to implement in the future are suggested. This review not only updates the review paper by Pinker et al. (1995) on satellite methods to derive SSI but also offers a more comprehensive summary of the related studies and applications.

[1]  Zhanqing Li Influence of Absorbing Aerosols on the Inference of Solar Surface Radiation Budget and Cloud Absorption , 1998 .

[2]  R. Perez,et al.  Satellite-to-irradiance modeling - a new version of the SUNY model , 2015, 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC).

[3]  Xiaotong Zhang,et al.  Analysis of surface incident shortwave radiation from four satellite products , 2015 .

[4]  Larry W. Thomason,et al.  Climate forcings in Goddard Institute for Space Studies SI2000 simulations , 2002 .

[5]  H. Guillard,et al.  A method for the determination of the global solar radiation from meteorological satellite data , 1986 .

[6]  Two‐stream approximations revisited: A new improvement and tests with GCM data , 2002 .

[7]  C. Schär,et al.  The global energy balance from a surface perspective , 2013, Climate Dynamics.

[8]  S. Deng,et al.  A critical review of the models used to estimate solar radiation , 2017 .

[9]  Clemens Simmer,et al.  Multiresolution analysis of the temporal variance and correlation of transmittance and reflectance of an atmospheric column , 2009 .

[10]  William B. Rossow,et al.  Calculation of surface and top of atmosphere radiative fluxes from physical quantities based on ISCCP data sets: 2. Validation and first results , 1995 .

[11]  J. D. Tarpley Estimating Incident Solar Radiation at the Surface from Geostationary Satellite Data , 1979 .

[12]  Shuguo Wang,et al.  Validation of Regional-Scale Remote Sensing Products in China: From Site to Network , 2016, Remote. Sens..

[13]  Xiaotong Zhang,et al.  Preliminary validation of GLASS-DSSR products using surface measurements collected in arid and semi-arid regions of China , 2013 .

[14]  Patrick E. Van Laake,et al.  Simplified atmospheric radiative transfer modelling for estimating incident PAR using MODIS atmosphere products , 2004 .

[15]  Shunlin Liang,et al.  Estimation of net surface shortwave radiation from MODIS data , 2012 .

[16]  R. Hollmann,et al.  CM-SAF surface radiation budget: First results with AVHRR data , 2004 .

[17]  Yujie Wang,et al.  Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm , 2011 .

[18]  Jianjun Liu,et al.  Opposite effects of absorbing aerosols on the retrievals of cloud optical depth from spaceborne and ground‐based measurements , 2014 .

[19]  A. Ohmura,et al.  First global WCRP shortwave surface radiation budget dataset , 1995 .

[20]  Yi Zhang,et al.  Estimation of all-sky instantaneous surface incident shortwave radiation from Moderate Resolution Imaging Spectroradiometer data using optimization method , 2018 .

[21]  Xuhui Lee,et al.  Correcting surface solar radiation of two data assimilation systems against FLUXNET observations in North America , 2013 .

[22]  Zhanqing Li,et al.  Retrieval of Surface Solar Radiation Budget under Ice Cloud Sky: Uncertainty Analysis and Parameterization , 2002 .

[23]  Xin Li,et al.  A LUT-based approach to estimate surface solar irradiance by combining MODIS and MTSAT data , 2011 .

[24]  Paul W. Stackhouse,et al.  The Langley Parameterized Shortwave Algorithm (LPSA) for Surface Radiation Budget Studies. 1.0 , 2001 .

[25]  Validation of a Physical Retrieval Scheme of Solar Surface Irradiances from Narrowband Satellite Radiances , 2005 .

[26]  R. A. Roebeling,et al.  Estimating surface solar irradiance from METEOSAT SEVIRI-derived cloud properties , 2008 .

[27]  Richard Müller,et al.  Digging the METEOSAT Treasure - 3 Decades of Solar Surface Radiation , 2015, Remote. Sens..

[28]  J. F. Meirink,et al.  CLAAS: the CM SAF cloud property data set using SEVIRI , 2014 .

[29]  Zhanqing Li,et al.  Have Clouds Darkened Since 1995? , 2003, Science.

[30]  William O'Hirok,et al.  A simple method for removing 3-D radiative effects in satellite retrievals of surface irradiance , 2005 .

[31]  Lawrence E. Flynn,et al.  Algorithm for the estimation of vertical ozone profiles from the backscattered ultraviolet technique , 1996 .

[32]  W. Rossow,et al.  The International Satellite Cloud Climatology Project (ISCCP): The First Project of the World Climate Research Programme , 1983 .

[33]  Martin Wild,et al.  Spatial representativeness of ground‐based solar radiation measurements—Extension to the full Meteosat disk , 2014 .

[34]  Kun Yang,et al.  Improving estimation of hourly, daily, and monthly solar radiation by importing global data sets , 2006 .

[35]  J. F. Meirink,et al.  An intercomparison and validation of satellite‐based surface radiative energy flux estimates over the Arctic , 2017 .

[36]  M. Iqbal An introduction to solar radiation , 1983 .

[37]  Arve Kylling,et al.  The libRadtran software package for radiative transfer calculations (version 2.0.1) , 2015 .

[38]  Yaoming Ma,et al.  Evaluation of satellite estimates of downward shortwave radiation over the Tibetan Plateau , 2008 .

[39]  Richard Perez,et al.  Detecting Calibration Drift at Ground Truth Stations A Demonstration of Satellite Irradiance Models' Accuracy , 2017 .

[40]  W. Rossow,et al.  Advances in understanding clouds from ISCCP , 1999 .

[41]  Shunlin Liang,et al.  Estimation of monthly-mean daily global solar radiation based on MODIS and TRMM products , 2011 .

[42]  Johannes Schmetz,et al.  Towards a surface radiation climatology: retrieval of downward irradiances from satellites , 1989 .

[43]  R. Pinker,et al.  Modeling Surface Solar Irradiance for Satellite Applications on a Global Scale , 1992 .

[44]  B. Briegleb Delta‐Eddington approximation for solar radiation in the NCAR community climate model , 1992 .

[45]  R. Fovell,et al.  A WRF simulation of the impact of 3-D radiative transfer on surface hydrology over the Rocky Mountains and Sierra Nevada , 2013 .

[46]  Chunlin Huang,et al.  Representativeness errors of point-scale ground-based solar radiation measurements in the validation of remote sensing products , 2016 .

[47]  A. Adane,et al.  Satellite approach based on cloud cover classification: Estimation of hourly global solar radiation from meteosat images , 2008 .

[48]  Zhanqing Li,et al.  A new approach for remote sensing of canopy-absorbed photosynthetically active radiation. I: Total surface absorption , 1996 .

[49]  Shunlin Liang,et al.  An algorithm for estimating downward shortwave radiation from GMS 5 visible imagery and its evaluation over China , 2010 .

[50]  Hao Chen,et al.  Development and Validation of a Robust Algorithm for Retrieving Aerosol Optical Depth Over Land From MODIS Data , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[51]  N. Loeb,et al.  Surface Irradiances Consistent With CERES-Derived Top-of-Atmosphere Shortwave and Longwave Irradiances , 2013 .

[52]  James B. Kerr,et al.  Validation of an UV inversion algorithm using satellite and surface measurements , 2000 .

[53]  Taiping Zhang,et al.  The validation of the GEWEX SRB surface shortwave flux data products using BSRN measurements: A systematic quality control, production and application approach , 2013 .

[54]  Shunlin Liang,et al.  Characterizing the surface radiation budget over the Tibetan Plateau with ground‐measured, reanalysis, and remote sensing data sets: 1. Methodology , 2013 .

[55]  Zhanqing Li,et al.  Long-term global earth surface ultraviolet radiation exposure derived from ISCCP and TOMS satellite measurements , 2003 .

[56]  Jan Kleissl,et al.  Solar Energy Forecasting and Resource Assessment , 2013 .

[57]  Zhanqing Li,et al.  A Near-Global Climatology of Single-Layer and Overlapped Clouds and Their Optical Properties Retrieved from Terra/MODIS Data Using a New Algorithm , 2005, Journal of Climate.

[58]  Rachel T. Pinker,et al.  Shortwave radiative fluxes from MODIS: Model development and implementation , 2009 .

[59]  Robert D. Cess,et al.  Inferring surface solar absorption from broadband satellite measurements , 1989 .

[60]  Congbin Fu,et al.  Assessment of GEWEX/SRB version 3.0 monthly global radiation dataset over China , 2011 .

[61]  M. Bosilovich,et al.  Evaluation of the Reanalysis Products from GSFC, NCEP, and ECMWF Using Flux Tower Observations , 2012 .

[62]  P. Ineichen,et al.  A new operational model for satellite-derived irradiances: description and validation , 2002 .

[63]  S. Margulis,et al.  Assimilation of multiresolution radiation products into a downwelling surface radiation model: 2. Posterior ensemble implementation , 2010 .

[64]  D. Tanré,et al.  Remote Sensing of Tropospheric Aerosols from Space: Past, Present, and Future. , 1999 .

[65]  Alexander P. Trishchenko,et al.  Natural variability and sampling errors in solar radiation measurements for model validation over the Atmospheric Radiation Measurement Southern Great Plains region , 2005 .

[66]  Yoram J. Kaufman,et al.  Water vapor retrievals using Moderate Resolution Imaging Spectroradiometer (MODIS) near‐infrared channels , 2003 .

[67]  Fatih Onur Hocaoglu,et al.  A novel M-D (multi-dimensional) linear prediction filter approach for hourly solar radiation forecasting , 2014 .

[68]  L. Wald,et al.  The method Heliosat-2 for deriving shortwave solar radiation from satellite images , 2004 .

[69]  Zhanqing Li,et al.  Trends in aerosol optical properties over the Bohai Rim in Northeast China from 2004 to 2010 , 2011 .

[70]  Rachel T. Pinker,et al.  Modeling shortwave radiative fluxes from satellites , 2012 .

[71]  Soteris A. Kalogirou,et al.  Machine learning methods for solar radiation forecasting: A review , 2017 .

[72]  Rachel T. Pinker,et al.  Toward improved satellite estimates of short‐wave radiative fluxes—Focus on cloud detection over snow: 1. Methodology , 2007 .

[73]  L. Leung,et al.  Simulating 3-D radiative transfer effects over the Sierra Nevada Mountains using WRF , 2012 .

[74]  Hongliang Fang,et al.  Estimation of incident photosynthetically active radiation from Moderate Resolution Imaging Spectrometer data , 2006 .

[75]  R. Perez,et al.  Chapter 2 – Semi-Empirical Satellite Models , 2013 .

[76]  William B. Rossow,et al.  ISCCP global radiance data set: a new resource for climate research , 1985 .

[77]  T. Manninen,et al.  EUMETSAT Satellite Application Facility on Climate Monitoring , 2012 .

[78]  W. L. Darnell,et al.  Estimation of surface insolation using sun-synchronous satellite data , 1988 .

[79]  Xiaolei Niu,et al.  Retrieving high-resolution surface solar radiation with cloud parameters derived by combining MODIS and MTSAT data , 2015 .

[80]  Andrew A. Lacis,et al.  Calculation of surface and top of atmosphere radiative fluxes from physical quantities based on ISCCP data sets: 1. Method and sensitivity to input data uncertainties , 1995 .

[81]  H. Beyer,et al.  Solar energy assessment using remote sensing technologies , 2003 .

[82]  T. Andrews,et al.  An update on Earth's energy balance in light of the latest global observations , 2012 .

[83]  Shunlin Liang,et al.  Remote sensing of earth’s energy budget: synthesis and review , 2019, Int. J. Digit. Earth.

[84]  Paul W. Stackhouse,et al.  An assessment of satellite surface radiation products for highlands with Tibet instrumental data , 2006 .

[85]  A. Lacis,et al.  Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data , 2004 .

[86]  Zhibo Zhang,et al.  Improvements in Shortwave Bulk Scattering and Absorption Models for the Remote Sensing of Ice Clouds , 2011 .

[87]  Robert D. Cess,et al.  Surface Net Solar Radiation Estimated from Satellite Measurements: Comparisons with Tower Observations , 1993 .

[88]  C. H. Whitlock,et al.  Absorption of Solar Radiation by Clouds: Observations Versus Models , 1995, Science.

[89]  Xiangao Xia,et al.  Analysis of downwelling surface solar radiation in China from National Centers for Environmental Prediction reanalysis, satellite estimates, and surface observations , 2006 .

[90]  F. Hocaoglu,et al.  A novel adaptive approach for hourly solar radiation forecasting , 2016 .

[91]  Mingguo Ma,et al.  Toward a Broadband Parameterization Scheme for Estimating Surface Solar Irradiance: Development and Preliminary Results on MODIS Products , 2018, Journal of Geophysical Research: Atmospheres.

[92]  E. Dutton,et al.  Do Satellites Detect Trends in Surface Solar Radiation? , 2004, Science.

[93]  Jerome Riedi,et al.  A Global Multilayer Cloud Identification with POLDER/PARASOL , 2017 .

[94]  Philippe Lauret,et al.  Use of satellite data to improve solar radiation forecasting with Bayesian Artificial Neural Networks , 2015 .

[95]  Qiang Liu,et al.  Global LAnd Surface Satellite (GLASS) Products: Algorithms, Validation and Analysis , 2014 .

[96]  Xiaotong Zhang,et al.  Generating Global LAnd Surface Satellite incident shortwave radiation and photosynthetically active radiation products from multiple satellite data , 2014 .

[97]  Hartwig Deneke,et al.  Using MSG-SEVIRI Cloud Physical Properties and Weather Radar Observations for the Detection of Cb/TCu Clouds , 2011 .

[98]  A. Slingo A GCM Parameterization for the Shortwave Radiative Properties of Water Clouds , 1989 .

[99]  R. Jin,et al.  Understanding the Heterogeneity of Soil Moisture and Evapotranspiration Using Multiscale Observations From Satellites, Airborne Sensors, and a Ground-Based Observation Matrix , 2017, IEEE Geoscience and Remote Sensing Letters.

[100]  D. Folini,et al.  From Point to Area: Worldwide Assessment of the Representativeness of Monthly Surface Solar Radiation Records , 2018, Journal of Geophysical Research: Atmospheres.

[101]  R. Kuhlemann,et al.  Rethinking satellite-based solar irradiance modelling: The SOLIS clear-sky module , 2004 .

[102]  Bryan A. Baum,et al.  Spectrally Consistent Scattering, Absorption, and Polarization Properties of Atmospheric Ice Crystals at Wavelengths from 0.2 to 100 um , 2013 .

[103]  Qing Xiao,et al.  Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific Objectives and Experimental Design , 2013 .

[104]  Martin Wild,et al.  The Global Energy Balance Archive (GEBA): A database for the worldwide measured surface energy fluxes , 2017 .

[105]  Y. Ge,et al.  Upscaling evapotranspiration measurements from multi-site to the satellite pixel scale over heterogeneous land surfaces , 2016 .

[106]  C. Bohren,et al.  An introduction to atmospheric radiation , 1981 .

[107]  J. Cihlar,et al.  Estimation of photosynthetically active radiation absorbed at the surface , 1997 .

[108]  P. K. Pal,et al.  Estimation of net surface shortwave radiation over the tropical Indian Ocean using geostationary satellite observations: Algorithm and validation , 2011 .

[109]  Menghua Wang,et al.  Uncertainties in satellite remote sensing of aerosols and impact on monitoring its long-term trend: a review and perspective , 2009 .

[110]  Michael D. King,et al.  A solar reflectance method for retrieving the optical thickness and droplet size of liquid water clouds over snow and ice surfaces , 2001 .

[111]  Martin Wild,et al.  Urban impacts on mean and trend of surface incident solar radiation , 2014 .

[112]  Arve Kylling,et al.  libRadtran user's guide , 2010 .

[113]  C. Gueymard Direct solar transmittance and irradiance predictions with broadband models. Part II: validation with high-quality measurements , 2003 .

[114]  Shunlin Liang,et al.  Characterizing the surface radiation budget over the Tibetan Plateau with ground-measured, reanalysis, and remote sensing data sets: 2. Spatiotemporal analysis , 2013 .

[115]  V. Ramanathan,et al.  Warm Pool Heat Budget and Shortwave Cloud Forcing: A Missing Physics? , 1995, Science.

[116]  C. Gueymard Direct solar transmittance and irradiance predictions with broadband models. Part I: detailed theoretical performance assessment , 2003 .

[117]  Lu Xu,et al.  Temporal Upscaling and Reconstruction of Thermal Remotely Sensed Instantaneous Evapotranspiration , 2015, Remote. Sens..

[118]  Tsutomu Takashima,et al.  Estimation of SW Flux Absorbed at the Surface from TOA Reflected Flux , 1993 .

[119]  L. Wald,et al.  A new method for assessing surface solar irradiance: Heliosat-4 , 2012 .

[120]  C. Gautier,et al.  Remote sensing of surface solar irradiance with corrections for 3-D cloud effects , 2002 .

[121]  R. Hollmann,et al.  The CM-SAF operational scheme for the satellite based retrieval of solar surface irradiance - a LUT based eigenvector hybrid approach. , 2009 .

[122]  David Pozo-Vázquez,et al.  An artificial neural network ensemble model for estimating global solar radiation from Meteosat satellite images , 2013 .

[123]  Chunlin Huang,et al.  High resolution surface radiation products for studies of regional energy, hydrologic and ecological processes over Heihe river basin, northwest China , 2016 .

[124]  Nobuyuki Tamai,et al.  A hybrid model for estimating global solar radiation , 2001 .

[125]  J. Hansen,et al.  Radiative cooling by stratospheric water vapor: Big differences in GCM results , 2001 .

[126]  Steven A. Ackerman,et al.  A Shortwave Parameterization Revised to Improve Cloud Absorption , 1984 .

[127]  S. Fritz,et al.  Satellite Measurements of Reflected Solar Energy and the Energy Received at the Ground , 1964 .

[128]  M. Chou The derivation of cloud parameters from satellite-measured radiances for use in surface radiation calculations , 1991 .

[129]  B. Wielicki,et al.  SATELLITES AND SATELLITE REMOTE SENSING | Earth's Radiation Budget , 2015 .

[130]  E. Vermote,et al.  Second‐generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance , 2007 .

[131]  Shihao Tang,et al.  An improved physical split-window algorithm for precipitable water vapor retrieval exploiting the water vapor channel observations , 2017 .

[132]  Zhanqing Li,et al.  A simple and efficient method for retrieving surface UV radiation dose rate from satellite , 2000 .

[133]  T. H. Haar,et al.  Satellite Observations of the Earth's Radiation Budget , 1969, Science.

[134]  Shunlin Liang,et al.  Development of a hybrid method for estimating land surface shortwave net radiation from MODIS data , 2010 .

[135]  Steven Platnick,et al.  Resolving ice cloud optical thickness biases between CALIOP and MODIS using infrared retrievals , 2015 .

[136]  Serm Janjai,et al.  A model for calculating hourly global solar radiation from satellite data in the tropics , 2009 .

[137]  Steven Platnick,et al.  The MODIS Cloud Optical and Microphysical Products: Collection 6 Updates and Examples From Terra and Aqua , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[138]  Zhanqing Li,et al.  Scene Identification and Its Effect on Cloud Radiative Forcing in the Arctic , 1991 .

[139]  Bernhard Mayer,et al.  Atmospheric Chemistry and Physics Technical Note: the Libradtran Software Package for Radiative Transfer Calculations – Description and Examples of Use , 2022 .

[140]  Hengmao Wang,et al.  How good are ocean buoy observations of radiative fluxes? , 2009 .

[141]  Xin Li,et al.  Formulation of scale transformation in a stochastic data assimilation framework , 2017 .

[142]  Filomena Romano,et al.  Physical and statistical approaches for cloud identification using Meteosat Second Generation-Spinning Enhanced Visible and Infrared Imager Data , 2008 .

[143]  Steven A. Margulis,et al.  The Terrestrial Water Cycle: Modeling and Data Assimilation across Catchment Scales , 2006 .

[144]  H. Beyer,et al.  Modifications of the Heliosat procedure for irradiance estimates from satellite images , 1996 .

[145]  J. D. Tarpley,et al.  Surface radiation budgets in support of the GEWEX Continental‐Scale International Project (GCIP) and the GEWEX Americas Prediction Project (GAPP), including the North American Land Data Assimilation System (NLDAS) project , 2003 .

[146]  Robert Frouin,et al.  A review of satellite methods to derive surface shortwave irradiance , 1995 .

[147]  J. M. Vindel,et al.  Temporal scaling analysis of irradiance estimated from daily satellite data and numerical modelling , 2016 .

[148]  Shunlin Liang,et al.  An efficient physically based parameterization to derive surface solar irradiance based on satellite atmospheric products , 2015 .

[149]  Steven A. Margulis,et al.  High-resolution satellite-based cloud-coupled estimates of total downwelling surface radiation for hydrologic modelling applications. , 2009 .

[150]  Yanzhao Zhou,et al.  Progress in the study of oasis-desert interactions , 2016 .

[151]  J. T. Suttles,et al.  Surface radiation budget for climate applications , 1986 .

[152]  W. Paul Menzel,et al.  The MODIS cloud products: algorithms and examples from Terra , 2003, IEEE Trans. Geosci. Remote. Sens..

[153]  T. Eck,et al.  Global evaluation of the Collection 5 MODIS dark-target aerosol products over land , 2010 .

[154]  Gautam Bisht,et al.  Estimation of net radiation from the MODIS data under all sky conditions: Southern Great Plains case study , 2010 .

[155]  Louis Moreau,et al.  A new approach for remote sensing of canopy absorbed photosynthetically active radiation. II : Proportion of canopy absorption , 1996 .

[156]  Gautam Bisht,et al.  Estimation of the net radiation using MODIS (Moderate Resolution Imaging Spectroradiometer) data for clear sky days , 2005 .

[157]  Louis Moreau,et al.  On solar energy disposition : A perspective from observation and modeling , 1997 .

[158]  C. Gautier,et al.  A Simple Physical Model to Estimate Incident Solar Radiation at the Surface from GOES Satellite Data , 1980 .

[159]  M. Wild,et al.  Spatial representativeness of ground‐based solar radiation measurements , 2013 .

[160]  Jin Huang,et al.  Enhanced Deep Blue aerosol retrieval algorithm: The second generation , 2013 .

[161]  C. H. Whitlock,et al.  Assessment of the global monthly mean surface insolation estimated from satellite measurements using global energy balance archive data , 1995 .

[162]  A. Kokhanovsky,et al.  Atmospheric Aerosol Monitoring from Satellite Observations: A History of Three Decades , 2009 .

[163]  Lorraine Remer,et al.  The MODIS 2.1-μm channel-correlation with visible reflectance for use in remote sensing of aerosol , 1997, IEEE Trans. Geosci. Remote. Sens..

[164]  Xiaotong Zhang,et al.  Evaluation of the Reanalysis Surface Incident Shortwave Radiation Products from NCEP, ECMWF, GSFC, and JMA Using Satellite and Surface Observations , 2016, Remote. Sens..

[165]  Lucien Wald,et al.  The HelioClim Project: Surface Solar Irradiance Data for Climate Applications , 2011, Remote. Sens..