Neural network ensemble with probabilistic fusion and its application to gait recognition

The recognition of a person from his (or her) gait is a relatively new and promising research direction in biometrics since it is noninvasive and human friendly. Gait recognition, however, has the weakness that it is not reliable compared with other biometrics. To increase reliability, we applied a neural network ensemble with probabilistic fusion to the gait recognition problem. To improve recognition accuracy, we define belief as the posterior probability of the pattern and combine the component neural networks of the ensemble based on the belief. Experiments are performed with the NLPR and SOTON databases, and the effectiveness of the proposed method for gait recognition is demonstrated.

[1]  Tieniu Tan,et al.  Silhouette Analysis-Based Gait Recognition for Human Identification , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Xuelong Li,et al.  Gait Components and Their Application to Gender Recognition , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[3]  Jiwen Lu,et al.  Gait Recognition via Independent Component Analysis Based on Support Vector Machine and Neural Network , 2005, ICNC.

[4]  Tieniu Tan,et al.  Fusion of static and dynamic body biometrics for gait recognition , 2003, IEEE Transactions on Circuits and Systems for Video Technology.

[5]  Sung-Bae Cho,et al.  Pattern recognition with neural networks combined by genetic algorithm , 1999, Fuzzy Sets Syst..

[6]  Lars Kai Hansen,et al.  Neural Network Ensembles , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Raymond S. T. Lee,et al.  A New Representation for Human Gait Recognition: Motion Silhouettes Image (MSI) , 2006, ICB.

[8]  Martin T. Hagan,et al.  Neural network design , 1995 .

[9]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[10]  Ludmila I. Kuncheva,et al.  A Theoretical Study on Six Classifier Fusion Strategies , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Nikolaos V. Boulgouris,et al.  Human gait recognition based on matching of body components , 2007, Pattern Recognit..

[12]  Xuelong Li,et al.  Discriminant Locally Linear Embedding With High-Order Tensor Data , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[13]  Wolfram Burgard,et al.  Probabilistic Robotics (Intelligent Robotics and Autonomous Agents) , 2005 .

[14]  Sudeep Sarkar,et al.  Baseline results for the challenge problem of HumanID using gait analysis , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[15]  David G. Stork,et al.  Pattern Classification , 1973 .

[16]  Tianjun Ma,et al.  Towards Feature Fusion for Human Identification by Gait , 2007, Fourth International Conference on Image and Graphics (ICIG 2007).

[17]  Murat Ekinci Gait Recognition Using Multiple Projections , 2006, 7th International Conference on Automatic Face and Gesture Recognition (FGR06).

[18]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[19]  Mark S. Nixon,et al.  Gait Verification Using Probabilistic Methods , 2005, 2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION'05) - Volume 1.

[20]  Larry S. Davis,et al.  EigenGait: Motion-Based Recognition of People Using Image Self-Similarity , 2001, AVBPA.

[21]  T. Ho A theory of multiple classifier systems and its application to visual word recognition , 1992 .

[22]  Mignon Park,et al.  Gait Recognition using Sampled Point Vectors , 2006, 2006 SICE-ICASE International Joint Conference.

[23]  Shi Chen,et al.  Stride History Image: A New Feature Representation for Pedestrian Identification , 2007, 2007 IEEE Workshop on Signal Processing Systems.

[24]  Sung-Bae Cho,et al.  Combining multiple neural networks by fuzzy integral for robust classification , 1995, IEEE Trans. Syst. Man Cybern..

[25]  Aaron F. Bobick,et al.  Gait recognition using static, activity-specific parameters , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[26]  Mark S. Nixon,et al.  Automatic Gait Recognition via Fourier Descriptors of Deformable Objects , 2003, AVBPA.

[27]  Mark S. Nixon,et al.  On a Large Sequence-Based Human Gait Database , 2004 .

[28]  Xuelong Li,et al.  General Tensor Discriminant Analysis and Gabor Features for Gait Recognition , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Sung-Bae Cho,et al.  Neural-network classifiers for recognizing totally unconstrained handwritten numerals , 1997, IEEE Trans. Neural Networks.

[30]  D Wang,et al.  Use of fuzzy-logic-inspired features to improve bacterial recognition through classifier fusion , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[31]  W. Eric L. Grimson,et al.  Gait analysis for recognition and classification , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[32]  Xuelong Li,et al.  Elapsed Time in Human Gait Recognition: A New Approach , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[33]  Jeffrey E. Boyd,et al.  Synchronization of oscillations for machine perception of gaits , 2004, Comput. Vis. Image Underst..

[34]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[35]  Mark S. Nixon,et al.  On automated model-based extraction and analysis of gait , 2004, Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings..

[36]  Rama Chellappa,et al.  Gait Analysis for Human Identification , 2003, AVBPA.

[37]  Robert T. Collins,et al.  Silhouette-based human identification from body shape and gait , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[38]  Xuelong Li,et al.  Human Gait Recognition With Matrix Representation , 2006, IEEE Transactions on Circuits and Systems for Video Technology.

[39]  Rama Chellappa,et al.  Identification of humans using gait , 2004, IEEE Transactions on Image Processing.