A Semigroup Approach to Boundary Feedback Systems

Abstract.In this paper we convert a (linear abstract) initial boundary value problem into an abstract Cauchy problem on some product space and use semigroup methods to solve it. In particular, we apply spectral theory in order to discuss stability under boundary feedback.

[1]  Wolfgang Desch,et al.  Least Square Control Problems in Nonreflexive Spaces , 2001 .

[2]  H. Amann,et al.  Strongly continuous dual semigroups , 1996 .

[3]  J. Goldstein,et al.  The heat equation with generalized Wentzell boundary condition , 2002 .

[4]  Jack K. Hale,et al.  Introduction to Functional Differential Equations , 1993, Applied Mathematical Sciences.

[5]  R. Nagel,et al.  One-parameter semigroups for linear evolution equations , 1999 .

[6]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[7]  Positivity and Stability for One-Sided Coupled Operator Matrices , 1997 .

[8]  E. Stein,et al.  Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .

[9]  R. Nagel,et al.  One-parameter Semigroups of Positive Operators , 1986 .

[10]  W. Desch,et al.  Feedback boundary control problems for linear semigroups , 1985 .

[11]  W. Arendt Vector-valued laplace transforms and cauchy problems , 2002 .

[12]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[13]  R. Triggiani,et al.  Control Theory for Partial Differential Equations: Continuous and Approximation Theories , 2000 .

[14]  Resolvent positive operators and inhomogeneous boundary conditions , 2000 .

[15]  H. J. A. M. Heijmans,et al.  Semigroup Theory for Control on Sun-reflexive Banach Spaces , 1986 .

[16]  Jianhong Wu Theory and Applications of Partial Functional Differential Equations , 1996 .

[17]  S. M. Verduyn Lunel,et al.  Characteristic matrices and spectral properties of evolutionary systems , 1992 .