Locally Decodable Codes and Private Information Retrieval Schemes

Locally decodable codes (LDCs) are codes that simultaneously provide efficient random access retrieval and high noise resilience by allowing reliable reconstruction of an arbitrary bit of a message by looking at only a small number of randomly chosen codeword bits. Local decodability comes with a certain loss in terms of efficiency specifically, locally decodable codes require longer codeword lengths than their classical counterparts. Private information retrieval (PIR) schemes are cryptographic protocols designed to safeguard the privacy of database users. They allow clients to retrieve records from public databases while completely hiding the identity of the retrieved records from database owners. In this book the author provides a fresh algebraic look at the theory of locally decodable codes and private information retrieval schemes, obtaining new families of each which have much better parameters than those of previously known constructions, and he also proves limitations of two server PIRs in a restricted setting that covers all currently known schemes. The author's related thesis won the ACM Dissertation Award in 2007, and this book includes some expanded sections and proofs, and notes on recent developments.

[1]  Julien P. Stern A new and efficient all-or-nothing disclosure of secrets protocol , 1998 .

[2]  David A. Cox,et al.  Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics) , 2007 .

[3]  Oded Goldreich,et al.  Short Locally Testable Codes and Proofs (Survey) , 2005, Electron. Colloquium Comput. Complex..

[4]  C. Stewart,et al.  On Divisors of Fermat, Fibonacci, Lucas, and Lehmer Numbers , 1977 .

[5]  Ronitt Rubinfeld,et al.  Monotonicity testing over general poset domains , 2002, STOC '02.

[6]  Eyal Kushilevitz,et al.  Private information retrieval , 1998, JACM.

[7]  Luca Trevisan,et al.  Some Applications of Coding Theory in Computational Complexity , 2004, Electron. Colloquium Comput. Complex..

[8]  Sergey Yekhanin Towards 3-query locally decodable codes of subexponential length , 2007, STOC '07.

[9]  Igor E. Shparlinski,et al.  On the largest prime factor of the mersenne numbers , 2007, 0704.1327.

[10]  Yuval Ishai,et al.  Information-Theoretic Private Information Retrieval: A Unied Construction (Extended Abstract) , 2001 .

[11]  A. Razborov,et al.  An Ω ( n 1 / 3 ) Lower Bound for Bilinear Group Based Private Information Retrieval , 2006 .

[12]  I. Isaacs Character Theory of Finite Groups , 1976 .

[13]  C. Pomerance Recent developments in primality testing , 1981 .

[14]  Andrei E. Romashchenko Reliable Computations Based on Locally Decodable Codes , 2006, STACS.

[15]  Yuval Ishai,et al.  Improved upper bounds on information-theoretic private information retrieval , 1999, STOC 1999.

[16]  Gábor N. Sárközy,et al.  An Extension Of The Ruzsa-Szemerédi Theorem , 2004, Comb..

[17]  David P. Woodruff New Lower Bounds for General Locally Decodable Codes , 2007, Electron. Colloquium Comput. Complex..

[18]  Yuval Ishai,et al.  Reducing the Servers Computation in Private Information Retrieval: PIR with Preprocessing , 2000, CRYPTO.

[19]  Ronald de Wolf,et al.  Exponential lower bound for 2-query locally decodable codes via a quantum argument , 2002, STOC '03.

[20]  Silvio Micali,et al.  Computationally Private Information Retrieval with Polylogarithmic Communication , 1999, EUROCRYPT.

[21]  M. Murty,et al.  The ABC conjecture and prime divisors of the Lucas and Lehmer sequences , 2000 .

[22]  Luca Trevisan,et al.  Lower bounds for linear locally decodable codes and private information retrieval , 2002, Proceedings 17th IEEE Annual Conference on Computational Complexity.

[23]  Yuval Ishai,et al.  Selective private function evaluation with applications to private statistics , 2001, PODC '01.

[24]  Yuval Ishai,et al.  One-way functions are essential for single-server private information retrieval , 1999, STOC '99.

[25]  Amos Beimel,et al.  Robust Information-Theoretic Private Information Retrieval , 2002, SCN.

[26]  William I. Gasarch,et al.  A Survey on Private Information Retrieval (Column: Computational Complexity) , 2004, Bull. EATCS.

[27]  Rafail Ostrovsky,et al.  A Survey of Single Database PIR: Techniques and Applications , 2007, IACR Cryptol. ePrint Arch..

[28]  Helger Lipmaa,et al.  An Oblivious Transfer Protocol with Log-Squared Communication , 2005, ISC.

[29]  Yuval Ishai,et al.  Breaking the O(n/sup 1/(2k-1)/) barrier for information-theoretic Private Information Retrieval , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[30]  Manindra Agrawal,et al.  PRIMES is in P , 2004 .

[31]  Rafail Ostrovsky,et al.  Replication is not needed: single database, computationally-private information retrieval , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[32]  Tal Malkin,et al.  A Random Server Model for Private Information Retrieval or How to Achieve Information Theoretic PIR Avoiding Database Replication , 1998, RANDOM.

[33]  T. Itoh On Lower Bounds for the Communication Complexity of Private Information Retrieval ∗ , 2000 .

[34]  P. Frankl,et al.  Linear Algebra Methods in Combinatorics I , 1988 .

[35]  Jaikumar Radhakrishnan,et al.  Better lower bounds for locally decodable codes , 2002, Proceedings 17th IEEE Annual Conference on Computational Complexity.

[36]  Aggelos Kiayias,et al.  Secure Games with Polynomial Expressions , 2001, ICALP.

[37]  Yuval Ishai,et al.  General constructions for information-theoretic private information retrieval , 2005, J. Comput. Syst. Sci..

[38]  Rudolf Lide,et al.  Finite fields , 1983 .

[39]  Martín Abadi,et al.  On hiding information from an oracle , 1987, STOC '87.

[40]  P. Erdös,et al.  On the greatest prime factor of $2^p - 1$ for a prime p and other expressions , 1976 .

[41]  William Gasarch A Survey on Private Information Retrieval , 2004 .

[42]  Rafail Ostrovsky,et al.  Single Database Private Information Retrieval Implies Oblivious Transfer , 2000, EUROCRYPT.

[43]  Madhu Sudan,et al.  Efficient Checking of Polynomials and Proofs and the Hardness of Appoximation Problems , 1995, Lecture Notes in Computer Science.

[44]  Leonid A. Levin,et al.  Checking computations in polylogarithmic time , 1991, STOC '91.

[45]  Sergey Yekhanin,et al.  Locally Decodable Codes From Nice Subsets of Finite Fields and Prime Factors of Mersenne Numbers , 2007, 2008 23rd Annual IEEE Conference on Computational Complexity.

[46]  C. Pomerance,et al.  On the largest prime factor of a Mersenne number , 2004 .

[47]  M. Rosen A proof of the Lucas-Lehmer test , 1988 .

[48]  Yuval Ishai,et al.  On Locally Decodable Codes, Self-correctable Codes, and t -Private PIR , 2007, APPROX-RANDOM.

[49]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[50]  Elizabeth D Mann Private access to distributed information , 1998 .

[51]  David Chaum,et al.  Multiparty unconditionally secure protocols , 1988, STOC '88.

[52]  Jonathan Katz,et al.  On the efficiency of local decoding procedures for error-correcting codes , 2000, STOC '00.

[53]  David P. Woodruff,et al.  A geometric approach to information-theoretic private information retrieval , 2005, 20th Annual IEEE Conference on Computational Complexity (CCC'05).

[54]  Yuval Ishai,et al.  On the Hardness of Information-Theoretic Multiparty Computation , 2004, EUROCRYPT.

[55]  Joan Feigenbaum,et al.  Hiding Instances in Multioracle Queries , 1990, STACS.

[56]  Manuel Blum,et al.  Self-testing/correcting with applications to numerical problems , 1990, STOC '90.

[57]  Kenji Obata,et al.  Optimal Lower Bounds for 2-Query Locally Decodable Linear Codes , 2002, RANDOM.

[58]  Moni Naor,et al.  Oblivious transfer and polynomial evaluation , 1999, STOC '99.

[59]  S. Wagstaff Divisors of Mersenne numbers , 1983 .

[60]  S. Weintraub Representation Theory of Finite Groups: Algebra and Arithmetic , 2003 .

[61]  Daniel A. Spielman,et al.  Nearly-linear size holographic proofs , 1994, STOC '94.

[62]  Silvio Micali,et al.  The round complexity of secure protocols , 1990, STOC '90.

[63]  Lance Fortnow,et al.  BPP has subexponential time simulations unlessEXPTIME has publishable proofs , 2005, computational complexity.

[64]  Avi Wigderson,et al.  Completeness theorems for non-cryptographic fault-tolerant distributed computation , 1988, STOC '88.

[65]  Jean Bourgain,et al.  A Gauss sum estimate in arbitrary finite fields , 2006 .

[66]  Jacobus H. van Lint,et al.  Introduction to Coding Theory , 1982 .

[67]  Eyal Kushilevitz,et al.  Private information retrieval , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[68]  Yuval Ishai,et al.  Breaking the Barrier for Information-Theoretic Private Information Retrieval , 2002 .

[69]  Richard J. Lipton,et al.  Efficient Checking of Computations , 1990, STACS.

[70]  K. Conrad,et al.  Finite Fields , 2018, Series and Products in the Development of Mathematics.

[71]  Lance Fortnow,et al.  A tight lower bound for restricted pir protocols , 2006, computational complexity.

[72]  Joan Feigenbaum,et al.  Security with Low Communication Overhead , 1990, CRYPTO.

[73]  A. Razborov,et al.  An Ω(n) Lower Bound for Bilinear Group Based Private Information Retrieval , 2008 .

[74]  Prasad Raghavendra,et al.  A Note on Yekhanin's Locally Decodable Codes , 2007, Electron. Colloquium Comput. Complex..

[75]  Ronald de Wolf,et al.  Improved Lower Bounds for Locally Decodable Codes and Private Information Retrieval , 2004, ICALP.

[76]  Andris Ambainis,et al.  On Lower Bounds for the Communication Complexity of Private Information Retrieval ∗ , 2000 .

[77]  C. L. Stewart,et al.  The greatest prime factor of $a^n - b^n$ , 1975 .

[78]  S. Chowla,et al.  The Greatest Prime Factor of x2 , 1935 .

[79]  R. Tennant Algebra , 1941, Nature.

[80]  R. Jackson Inequalities , 2007, Algebra for Parents.

[81]  Luca Trevisan,et al.  Pseudorandom generators without the XOR lemma , 1999, Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317).

[82]  Martín Abadi,et al.  On Hiding Information from an Oracle , 1987, Proceeding Structure in Complexity Theory.

[83]  Rafail Ostrovsky,et al.  Private Information Storage , 1996, IACR Cryptol. ePrint Arch..

[84]  Alexander A. Razborov,et al.  An \Omega(n^1/3 ) Lower Bound for Bilinear Group Based Private Information Retrieval , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[85]  Toshiya Itoh,et al.  Efficient Private Information Retrieval , 1999 .

[86]  Yuval Ishai,et al.  Protecting data privacy in private information retrieval schemes , 1998, STOC '98.

[87]  Craig Gentry,et al.  Single-Database Private Information Retrieval with Constant Communication Rate , 2005, ICALP.