COVID19 Disease Map, a computational knowledge repository of virus–host interaction mechanisms

We need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS‐CoV‐2 infection, improving data interpretation and predicting key targets of intervention. Here, we describe a large‐scale community effort to build an open access, interoperable and computable repository of COVID‐19 molecular mechanisms. The COVID‐19 Disease Map (C19DMap) is a graphical, interactive representation of disease‐relevant molecular mechanisms linking many knowledge sources. Notably, it is a computational resource for graph‐based analyses and disease modelling. To this end, we established a framework of tools, platforms and guidelines necessary for a multifaceted community of biocurators, domain experts, bioinformaticians and computational biologists. The diagrams of the C19DMap, curated from the literature, are integrated with relevant interaction and text mining databases. We demonstrate the application of network analysis and modelling approaches by concrete examples to highlight new testable hypotheses. This framework helps to find signatures of SARS‐CoV‐2 predisposition, treatment response or prioritisation of drug candidates. Such an approach may help deal with new waves of COVID‐19 or similar pandemics in the long‐term perspective.

Alexander R. Pico | Benjamin M. Gyori | John A. Bachman | Sara Sadat Aghamiri | Lincoln D. Stein | Takahiro G. Yamada | Thawfeek M. Varusai | Emily E. Ackerman | Egon L. Wilighagen | C. Sander | J. Beckmann | C. Auffray | H. Kitano | S. Ballereau | M. Gillespie | P. D’Eustachio | B. Jassal | L. Matthews | A. Bauch | R. Haw | O. Wolkenhauer | S. Soliman | J. Hasenauer | K. Hanspers | E. Barillot | R. Balling | Guanming Wu | E. Demir | H. Hermjakob | C. Goble | J. Dopazo | Reinhard Schneider | J. Saez-Rodriguez | T. Korcsmáros | A. Yuryev | M. Acencio | F. Sacco | A. Mazein | B. De Meulder | E. Glaab | V. Satagopam | Anita de Waard | C. Evelo | F. Schreiber | L. Calzone | T. Freeman | A. Funahashi | A. Luna | J. Shoemaker | Jeremy D. Zucker | O. Babur | M. Kutmon | T. Helikar | A. Ruepp | D. Börnigen | P. Porras | L. Licata | A. Valencia | M. Vazquez | I. Kuperstein | Anders Riutta | D. Slenter | V. Shamovsky | Laurent Heirendt | Barbara Brauner | G. Fobo | G. Frishman | Corinna Montrone | D. Turei | D. Módos | R. Phair | D. Maier | A. Naldi | M. Peña-Chilet | Kinza Rian | Alberto Valdeolivas | N. Hiroi | Yusuke Hiki | K. Rothfels | Cristoffer Sevilla | S. Coort | F. Ehrhart | M. Ostaszewski | Leonard Schmiester | A. Montagud | B. L. Puniya | Vera Ortseifen | A. Treveil | M. Orlic-Milacic | Marvin Martens | M. Iannuccelli | F. Augé | L. Eijssen | Matti Hoch | L. C. Monraz Gómez | P. Gawron | V. Grouès | Z. Bocskei | Aurélien Dugourd | J. Ravel | A. Niarakis | J. Teuton | J. Scheel | M. Olbei | Kristie L. Oxford | D. Rex | Alina Renz | R. Fraser | Muying Wang | F. Messina | R. Overall | S. Owen | Gokce Yagmur Summak | Xiaoming Hu | Andreas Dräger | Tobias Czauderna | Aurelio Orta-Resendiz | Miguel Ponce de Leon | Julia Somers | Ebru Kocakaya | S. Marchesi | M. Esteban-Medina | Vidisha Singh | Vincent Noël | A. Pico | M. Conti | Nhung Pham | Martin Golebiewski | Ewa Smula | Shailendra Kumar Gupta | Hanna Borlinghaus | Muhammad Naveez | L. Fergusson | Marius Rameil | Vanessa Nakonecnij | Carlos Vega | A. Nesterova | Jakob Vanhoefer | Andrea Senff Ribeiro | Ralf Stephan | M. Vázquez | S. Aghamiri | Akira Funahashi | Daniela Börnigen | Goar Frishman | Augustin Luna | Laurence Calzone | B. de Meulder | Arnau Montagud | Valentin Grouès | Xiaoming Hu

[1]  Timothy L. Tickle,et al.  COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets , 2021, Nature.

[2]  L. Steinmetz,et al.  Single‐cell analyses reveal SARS‐CoV‐2 interference with intrinsic immune response in the human gut , 2021, Molecular systems biology.

[3]  Fabian J Theis,et al.  Integrated intra‐ and intercellular signaling knowledge for multicellular omics analysis , 2021, Molecular systems biology.

[4]  Raphael Gottardo,et al.  Integrated analysis of multimodal single-cell data , 2020, Cell.

[5]  Aurélien Naldi,et al.  Setting the basis of best practices and standards for curation and annotation of logical models in biology - highlights of the [BC]2 2019 CoLoMoTo/SysMod Workshop , 2020, Briefings Bioinform..

[6]  Y. Bi,et al.  ORF3a of the COVID-19 virus SARS-CoV-2 blocks HOPS complex-mediated assembly of the SNARE complex required for autolysosome formation , 2020, Developmental Cell.

[7]  Andreas Dräger,et al.  FBA reveals guanylate kinase as a potential target for antiviral therapies against SARS-CoV-2 , 2020, Bioinformatics.

[8]  Joseph H. Lubin,et al.  Evolution of the SARS-CoV-2 proteome in three dimensions (3D) during the first six months of the COVID-19 pandemic , 2020, bioRxiv.

[9]  Alexander R. Pico,et al.  Pathway information extracted from 25 years of pathway figures , 2020, Genome Biology.

[10]  G. Altan-Bonnet,et al.  β-Coronaviruses Use Lysosomes for Egress Instead of the Biosynthetic Secretory Pathway , 2020, Cell.

[11]  L. Steinmetz,et al.  Single‐cell analyses reveal SARS‐CoV‐2 interference with intrinsic immune response in the human gut , 2020, bioRxiv.

[12]  Peng Zhou,et al.  SARS-CoV-2 triggers inflammatory responses and cell death through caspase-8 activation , 2020, Signal Transduction and Targeted Therapy.

[13]  D. Zipeto,et al.  ACE2/ADAM17/TMPRSS2 Interplay May Be the Main Risk Factor for COVID-19 , 2020, Frontiers in Immunology.

[14]  Steven M. Holland,et al.  Autoantibodies against type I IFNs in patients with life-threatening COVID-19 , 2020, Science.

[15]  Ai-Ming Yu,et al.  The HMOX1 Pathway as a Promising Target for the Treatment and Prevention of SARS-CoV-2 of 2019 (COVID-19) , 2020, International journal of molecular sciences.

[16]  P. Shi,et al.  In vivo antiviral host transcriptional response to SARS-CoV-2 by viral load, sex, and age , 2020, PLoS biology.

[17]  Stephan Moser,et al.  Treatment of COVID-19 With Conestat Alfa, a Regulator of the Complement, Contact Activation and Kallikrein-Kinin System , 2020, Frontiers in Immunology.

[18]  E. Shin,et al.  The type I interferon response in COVID-19: implications for treatment , 2020, Nature Reviews Immunology.

[19]  J. Eckel,et al.  DPP4 and ACE2 in Diabetes and COVID-19: Therapeutic Targets for Cardiovascular Complications? , 2020, Frontiers in Pharmacology.

[20]  Yong Wang,et al.  Novel and potent inhibitors targeting DHODH are broad-spectrum antivirals against RNA viruses including newly-emerged coronavirus SARS-CoV-2 , 2020, Protein & Cell.

[21]  Tamás Korcsmáros,et al.  Integrated intra- and intercellular signaling knowledge for multicellular omics analysis , 2020, bioRxiv.

[22]  Hiroaki Kitano,et al.  SBML Level 3: an extensible format for the exchange and reuse of biological models , 2020, Molecular systems biology.

[23]  R. Serra,et al.  COVID-19 and the Kidney: From Epidemiology to Clinical Practice , 2020, Journal of clinical medicine.

[24]  Andrew Emili,et al.  SARS-CoV-2 Spike Protein Interacts with Multiple Innate Immune Receptors , 2020, bioRxiv.

[25]  Raphael Gottardo,et al.  Multiomic Immunophenotyping of COVID-19 Patients Reveals Early Infection Trajectories , 2020, bioRxiv.

[26]  Peihui Wang,et al.  Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) membrane (M) protein inhibits type I and III interferon production by targeting RIG-I/MDA-5 signaling , 2020, bioRxiv.

[27]  Eric Song,et al.  Longitudinal analyses reveal immunological misfiring in severe COVID-19 , 2020, Nature.

[28]  Nicolas Carlier,et al.  Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients , 2020, Science.

[29]  S. Nisole,et al.  Interplay between SARS-CoV-2 and the type I interferon response , 2020, PLoS pathogens.

[30]  Daniel J Klionsky,et al.  Canonical and Noncanonical Autophagy as Potential Targets for COVID-19 , 2020, Cells.

[31]  Karlheinz Peter,et al.  The Emerging Threat of (Micro)Thrombosis in COVID-19 and Its Therapeutic Implications , 2020, Circulation research.

[32]  A. T. Te Velde,et al.  Severe COVID-19: NLRP3 Inflammasome Dysregulated , 2020, Frontiers in Immunology.

[33]  Catherine E. Costello,et al.  CD209L/L-SIGN and CD209/DC-SIGN act as receptors for SARS-CoV-2 , 2020, bioRxiv.

[34]  Andrew R. Leach,et al.  The Global Phosphorylation Landscape of SARS-CoV-2 Infection , 2020, Cell.

[35]  Toshiaki Iba,et al.  The unique characteristics of COVID-19 coagulopathy , 2020, Critical Care.

[36]  Javad Alizadeh,et al.  Endoplasmic reticulum as a potential therapeutic target for covid-19 infection management? , 2020, European Journal of Pharmacology.

[37]  Ting Yang,et al.  Proteasome activator PA28γ-dependent degradation of coronavirus disease (COVID-19) nucleocapsid protein , 2020, Biochemical and Biophysical Research Communications.

[38]  Alimuddin Zumla,et al.  COVID-19: viral–host interactome analyzed by network based-approach model to study pathogenesis of SARS-CoV-2 infection , 2020, Journal of Translational Medicine.

[39]  Ugur Dogrusoz,et al.  Systems biology graphical notation markup language (SBGNML) version 0.3 , 2020, J. Integr. Bioinform..

[40]  Akiko Iwasaki,et al.  Type I and Type III Interferons – Induction, Signaling, Evasion, and Application to Combat COVID-19 , 2020, Cell Host & Microbe.

[41]  J. Berthelot,et al.  COVID-19 as a STING disorder with delayed over-secretion of interferon-beta , 2020, EBioMedicine.

[42]  Shan Su,et al.  A suspicious role of interferon in the pathogenesis of SARS-CoV-2 by enhancing expression of ACE2 , 2020, Signal Transduction and Targeted Therapy.

[43]  Thomas Becker,et al.  Structural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2 , 2020, Science.

[44]  Anna Niarakis,et al.  Automated inference of Boolean models from molecular interaction maps using CaSQ , 2020, Bioinform..

[45]  T. Hussain Faculty Opinions recommendation of Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System: Celebrating the 20th Anniversary of the Discovery of ACE2. , 2020 .

[46]  Malik Peiris,et al.  Tropism, replication competence, and innate immune responses of the coronavirus SARS-CoV-2 in human respiratory tract and conjunctiva: an analysis in ex-vivo and in-vitro cultures , 2020, The Lancet Respiratory Medicine.

[47]  Hiroaki Kitano,et al.  COVID-19 Disease Map, building a computational repository of SARS-CoV-2 virus-host interaction mechanisms , 2020, Scientific Data.

[48]  R. Schwartz,et al.  Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19 , 2020, Cell.

[49]  Benjamin J. Polacco,et al.  A SARS-CoV-2 Protein Interaction Map Reveals Targets for Drug-Repurposing , 2020, Nature.

[50]  M. Hoffmann,et al.  A Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells , 2020, Molecular Cell.

[51]  Slobodan Paessler,et al.  Antiviral activities of type I interferons to SARS-CoV-2 infection , 2020, Antiviral Research.

[52]  Aurelien Dugourd,et al.  Causal integration of multi‐omics data with prior knowledge to generate mechanistic hypotheses , 2020, bioRxiv.

[53]  Oren Etzioni,et al.  CORD-19: The Covid-19 Open Research Dataset , 2020, NLPCOVID19.

[54]  David Berlin,et al.  Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: A report of five cases , 2020, Translational Research.

[55]  Marta R. Hidalgo,et al.  Mechanistic modeling of the SARS-CoV-2 disease map , 2020, BioData Mining.

[56]  D. Gommers,et al.  Incidence of thrombotic complications in critically ill ICU patients with COVID-19 , 2020, Thrombosis Research.

[57]  Dong Yang,et al.  Comparative replication and immune activation profiles of SARS-CoV-2 and SARS-CoV in human lungs: an ex vivo study with implications for the pathogenesis of COVID-19 , 2020, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[58]  Yafei Wang,et al.  Iterative community-driven development of a SARS-CoV-2 tissue simulator , 2020, bioRxiv.

[59]  Roland Eils,et al.  SARS‐CoV‐2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells , 2020, The EMBO journal.

[60]  Jaipaul Singh,et al.  The Nrf2 Activator (DMF) and Covid-19: Is there a Possible Role? , 2020, Medical archives.

[61]  Robert J. Mason,et al.  Pathogenesis of COVID-19 from a cell biologic perspective , 2020, European Respiratory Journal.

[62]  Yuzhang Wu,et al.  The Novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Directly Decimates Human Spleens and Lymph Nodes , 2020, medRxiv.

[63]  Han Zhang,et al.  Coronavirus Disease 2019 (COVID-19) CT Findings: A Systematic Review and Meta-analysis , 2020, Journal of the American College of Radiology.

[64]  Fabian J Theis,et al.  SARS-CoV-2 Receptor ACE2 is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Enriched in Specific Cell Subsets Across Tissues , 2020, SSRN Electronic Journal.

[65]  Han-Ming Shen,et al.  Targeting the Endocytic Pathway and Autophagy Process as a Novel Therapeutic Strategy in COVID-19 , 2020, International journal of biological sciences.

[66]  G. Herrler,et al.  SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor , 2020, Cell.

[67]  M. Letko,et al.  Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses , 2020, Nature Microbiology.

[68]  Lu Lu,et al.  Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein , 2020, Cellular & Molecular Immunology.

[69]  Y. Hu,et al.  Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China , 2020, The Lancet.

[70]  Andrei Zinovyev,et al.  cd2sbgnml: bidirectional conversion between CellDesigner and SBGN formats , 2020, Bioinform..

[71]  M. Pellegrini,et al.  The IMEx coronavirus interactome: an evolving map of Coronaviridae–host molecular interactions , 2020, Database : the journal of biological databases and curation.

[72]  C. Auffray,et al.  Informing epidemic (research) responses in a timely fashion by knowledge management - a Zika virus use case. , 2020, Biology Open.

[73]  Livia Perfetto,et al.  SIGNOR 2.0, the SIGnaling Network Open Resource 2.0: 2019 update , 2019, Nucleic Acids Res..

[74]  Chris Sander,et al.  Pathway Commons 2019 Update: integration, analysis and exploration of pathway data , 2019, Nucleic Acids Res..

[75]  Marek Ostaszewski,et al.  Closing the gap between formats for storing layout information in systems biology , 2019, Briefings Bioinform..

[76]  Qin Ning,et al.  Clinical and immunological features of severe and moderate coronavirus disease 2019 , 2020 .

[77]  Mingyi Zhao,et al.  New Insights into the Nrf-2/HO-1 Signaling Axis and Its Application in Pediatric Respiratory Diseases , 2019, Oxidative medicine and cellular longevity.

[78]  Vincent Lotteau,et al.  Cerpegin-derived furo[3,4-c]pyridine-3,4(1H,5H)-diones enhance cellular response to interferons by de novo pyrimidine biosynthesis inhibition. , 2019, European journal of medicinal chemistry.

[79]  T. Fung,et al.  Human Coronavirus: Host-Pathogen Interaction. , 2019, Annual review of microbiology.

[80]  Julio Saez-Rodriguez,et al.  Footprint-based functional analysis of multiomic data , 2019, Current opinion in systems biology.

[81]  David K. Finlay,et al.  Competition for nutrients and its role in controlling immune responses , 2019, Nature Communications.

[82]  Alimuddin Zumla,et al.  Immunometabolism and Pulmonary Infections: Implications for Protective Immune Responses and Host-Directed Therapies , 2019, Front. Microbiol..

[83]  Piotr Gawron,et al.  MINERVA API and plugins: opening molecular network analysis and visualization to the community , 2019, Bioinform..

[84]  A. Ploss,et al.  Decoding type I and III interferon signalling during viral infection , 2019, Nature Microbiology.

[85]  Panuwat Trairatphisan,et al.  From expression footprints to causal pathways: contextualizing large signaling networks with CARNIVAL , 2019, npj Systems Biology and Applications.

[86]  M. Heller,et al.  Determination of host proteins composing the microenvironment of coronavirus replicase complexes by proximity-labeling , 2018, eLife.

[87]  Henning Hermjakob,et al.  Complex Portal 2018: extended content and enhanced visualization tools for macromolecular complexes , 2018, Nucleic Acids Res..

[88]  Emmanuel Barillot,et al.  PhysiBoSS: a multi-scale agent-based modelling framework integrating physical dimension and cell signalling , 2018, bioRxiv.

[89]  Priyanka Garg,et al.  Involving community in genes and pathway curation , 2019, Database.

[90]  Dhruv Chauhan,et al.  BAX/BAK-Induced Apoptosis Results in Caspase-8-Dependent IL-1β Maturation in Macrophages. , 2018, Cell reports.

[91]  Pedro T. Monteiro,et al.  Logical Modeling and Analysis of Cellular Regulatory Networks With GINsim 3.0 , 2018, Front. Physiol..

[92]  J. Sáez-Rodríguez,et al.  Benchmark and integration of resources for the estimation of human transcription factor activities , 2018, bioRxiv.

[93]  Feng He,et al.  Systems medicine disease maps: community-driven comprehensive representation of disease mechanisms , 2018, npj Systems Biology and Applications.

[94]  Anthony Rowe,et al.  A computational framework for complex disease stratification from multiple large-scale datasets , 2018, BMC Systems Biology.

[95]  Aurélien Naldi,et al.  The CoLoMoTo Interactive Notebook: Accessible and Reproducible Computational Analyses for Qualitative Biological Networks , 2018, bioRxiv.

[96]  Younho Choi,et al.  Autophagy during viral infection — a double-edged sword , 2018, Nature Reviews Microbiology.

[97]  Judith A. Smith Regulation of Cytokine Production by the Unfolded Protein Response; Implications for Infection and Autoimmunity , 2018, Front. Immunol..

[98]  Sven Sahle,et al.  SBML Level 3 package: Render, Version 1, Release 1 , 2018, J. Integr. Bioinform..

[99]  E. Sklan,et al.  TRIM56-mediated monoubiquitination of cGAS for cytosolic DNA sensing , 2018, Nature Communications.

[100]  T. Fung,et al.  Accessory proteins 8b and 8ab of severe acute respiratory syndrome coronavirus suppress the interferon signaling pathway by mediating ubiquitin-dependent rapid degradation of interferon regulatory factor 3 , 2017, Virology.

[101]  Ryan Miller,et al.  WikiPathways: a multifaceted pathway database bridging metabolomics to other omics research , 2017, Nucleic Acids Res..

[102]  John Kunze,et al.  Uniform resolution of compact identifiers for biomedical data , 2017, Scientific Data.

[103]  Henning Hermjakob,et al.  The Reactome pathway knowledgebase , 2013, Nucleic Acids Res..

[104]  Zhengfan Jiang,et al.  NEMO–IKKβ Are Essential for IRF3 and NF-κB Activation in the cGAS–STING Pathway , 2017, The Journal of Immunology.

[105]  Randy Heiland,et al.  PhysiCell: An open source physics-based cell simulator for 3-D multicellular systems , 2017, bioRxiv.

[106]  Aurélien Naldi,et al.  MaBoSS 2.0: an environment for stochastic Boolean modeling , 2017, Bioinform..

[107]  F. Arnaud,et al.  From core referencing to data re-use: two French national initiatives to reinforce paleodata stewardship (National Cyber Core Repository and LTER France Retro-Observatory) , 2017 .

[108]  Benjamin M. Gyori,et al.  From word models to executable models of signaling networks using automated assembly , 2017, bioRxiv.

[109]  Bernd Rinn,et al.  FAIRDOMHub: a repository and collaboration environment for sharing systems biology research , 2016, Nucleic Acids Res..

[110]  Dexter Pratt,et al.  NDEx: A Community Resource for Sharing and Publishing of Biological Networks. , 2017, Methods in molecular biology.

[111]  Julio Saez-Rodriguez,et al.  OmniPath: guidelines and gateway for literature-curated signaling pathway resources , 2016, Nature Methods.

[112]  Francisco Salavert,et al.  High throughput estimation of functional cell activities reveals disease mechanisms and predicts relevant clinical outcomes , 2016, bioRxiv.

[113]  S. Makino,et al.  Viral and Cellular mRNA Translation in Coronavirus-Infected Cells , 2016, Advances in Virus Research.

[114]  Alexander G. Fletcher,et al.  Comparing individual-based approaches to modelling the self-organization of multicellular tissues , 2016, bioRxiv.

[115]  Piotr Gawron,et al.  MINERVA—a platform for visualization and curation of molecular interaction networks , 2016, npj Systems Biology and Applications.

[116]  Mariano J. Alvarez,et al.  Network-based inference of protein activity helps functionalize the genetic landscape of cancer , 2016, Nature Genetics.

[117]  A. Califano,et al.  Network-based inference of protein activity helps functionalize the genetic landscape of cancer , 2016, Nature Genetics.

[118]  Marek Ostaszewski,et al.  Integration and Visualization of Translational Medicine Data for Better Understanding of Human Diseases , 2016, Big Data.

[119]  Francisco Salavert,et al.  Actionable pathways: interactive discovery of therapeutic targets using signaling pathway models , 2016, Nucleic Acids Res..

[120]  Chris T. A. Evelo,et al.  Reactome from a WikiPathways Perspective , 2016, PLoS Comput. Biol..

[121]  Lei Wan,et al.  SARS Coronavirus Papain-Like Protease Inhibits the TLR7 Signaling Pathway through Removing Lys63-Linked Polyubiquitination of TRAF3 and TRAF6 , 2016, International journal of molecular sciences.

[122]  Chuan Qin,et al.  Middle East Respiratory Syndrome Coronavirus Efficiently Infects Human Primary T Lymphocytes and Activates the Extrinsic and Intrinsic Apoptosis Pathways , 2015, The Journal of infectious diseases.

[123]  Zhiyong Lu,et al.  GNormPlus: An Integrative Approach for Tagging Genes, Gene Families, and Protein Domains , 2015, BioMed research international.

[124]  Nuno Nunes,et al.  PathVisio 3: An Extendable Pathway Analysis Toolbox , 2015, PLoS Comput. Biol..

[125]  Frank T. Bergmann,et al.  The Systems Biology Markup Language (SBML) Level 3 Package: Layout, Version 1 Core , 2015, J. Integr. Bioinform..

[126]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[127]  J. Kassis,et al.  Induction of Heme Oxygenase I (HMOX1) by HPP-4382: A Novel Modulator of Bach1 Activity , 2014, PloS one.

[128]  Zhongbin Chen,et al.  SARS coronavirus papain-like protease inhibits the type I interferon signaling pathway through interaction with the STING-TRAF3-TBK1 complex , 2014, Protein & Cell.

[129]  Samik Ghosh,et al.  Modeling and simulation using CellDesigner. , 2014, Methods in molecular biology.

[130]  N. Grandvaux,et al.  STAT2 and IRF9: Beyond ISGF3. , 2013, JAK-STAT.

[131]  C. Rice,et al.  IFNβ-dependent increases in STAT1, STAT2, and IRF9 mediate resistance to viruses and DNA damage , 2013, The EMBO journal.

[132]  Steffen Klamt,et al.  SBML qualitative models: a model representation format and infrastructure to foster interactions between qualitative modelling formalisms and tools , 2013, BMC Systems Biology.

[133]  B. Neuman,et al.  Severe Acute Respiratory Syndrome Coronavirus Nonstructural Proteins 3, 4, and 6 Induce Double-Membrane Vesicles , 2013, mBio.

[134]  A. Alcamí,et al.  Crosstalk between the type 1 interferon and nuclear factor kappa B pathways confers resistance to a lethal virus infection. , 2013, Cell host & microbe.

[135]  Yukio Imamura,et al.  Remarkable Role of Indoleamine 2,3-Dioxygenase and Tryptophan Metabolites in Infectious Diseases: Potential Role in Macrophage-Mediated Inflammatory Diseases , 2013, Mediators of inflammation.

[136]  Neema Jamshidi,et al.  Updating and curating metabolic pathways of TB. , 2013, Tuberculosis.

[137]  Yukihito Ishizaka,et al.  Monitoring of S Protein Maturation in the Endoplasmic Reticulum by Calnexin Is Important for the Infectivity of Severe Acute Respiratory Syndrome Coronavirus , 2012, Journal of Virology.

[138]  Alex Madrahimov,et al.  The Cell Collective: Toward an open and collaborative approach to systems biology , 2012, BMC Systems Biology.

[139]  Johannes Goll,et al.  Protein interaction data curation: the International Molecular Exchange (IMEx) consortium , 2012, Nature Methods.

[140]  Nicolas Le Novère,et al.  Identifiers.org and MIRIAM Registry: community resources to provide persistent identification , 2011, Nucleic Acids Res..

[141]  Michel Dumontier,et al.  Controlled vocabularies and semantics in systems biology , 2011, Molecular systems biology.

[142]  Marta L. DeDiego,et al.  Severe Acute Respiratory Syndrome Coronavirus Envelope Protein Regulates Cell Stress Response and Apoptosis , 2011, PLoS pathogens.

[143]  S. Simmons,et al.  Nrf2 expression modifies influenza A entry and replication in nasal epithelial cells , 2011, Free Radical Biology and Medicine.

[144]  Gary D Bader,et al.  BioPAX – A community standard for pathway data sharing , 2010, Nature Biotechnology.

[145]  Falk Schreiber,et al.  Editing, validating and translating of SBGN maps , 2010, Bioinform..

[146]  S. Akira,et al.  Pattern Recognition Receptors and Inflammation , 2010, Cell.

[147]  Felix Jonas,et al.  Liberation of SARS-CoV main protease from the viral polyprotein: N-terminal autocleavage does not depend on the mature dimerization mode , 2010, Protein & Cell.

[148]  Mark D. Robinson,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[149]  Chris T. A. Evelo,et al.  The BridgeDb framework: standardized access to gene, protein and metabolite identifier mapping services , 2010, BMC Bioinformatics.

[150]  Sarala M. Wimalaratne,et al.  The Systems Biology Graphical Notation , 2009, Nature Biotechnology.

[151]  H. Schätzl,et al.  Modulation of Host Cell Death by SARS Coronavirus Proteins , 2009, Molecular Biology of the SARS-Coronavirus.

[152]  T. Mogensen Pathogen Recognition and Inflammatory Signaling in Innate Immune Defenses , 2009, Clinical Microbiology Reviews.

[153]  David A. Stein,et al.  Severe Acute Respiratory Syndrome Coronavirus Triggers Apoptosis via Protein Kinase R but Is Resistant to Its Antiviral Activity , 2008, Journal of Virology.

[154]  T. Sasazuki,et al.  Modulation of TNF-α-converting enzyme by the spike protein of SARS-CoV and ACE2 induces TNF-α production and facilitates viral entry , 2008, Proceedings of the National Academy of Sciences.

[155]  Zhongbin Chen,et al.  Regulation of IRF-3-dependent Innate Immunity by the Papain-like Protease Domain of the Severe Acute Respiratory Syndrome Coronavirus , 2007, Journal of Biological Chemistry.

[156]  Ralph S. Baric,et al.  Severe Acute Respiratory Syndrome Coronavirus ORF6 Antagonizes STAT1 Function by Sequestering Nuclear Import Factors on the Rough Endoplasmic Reticulum/Golgi Membrane , 2007, Journal of Virology.

[157]  Mo Liu,et al.  Spike protein of SARS‐CoV stimulates cyclooxygenase‐2 expression via both calcium‐dependent and calcium‐independent protein kinase C pathways , 2007, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[158]  Kouji Matsushima,et al.  Augmentation of chemokine production by severe acute respiratory syndrome coronavirus 3a/X1 and 7a/X4 proteins through NF‐κB activation , 2006, FEBS Letters.

[159]  Michael Karin,et al.  Regulation and Function of IKK and IKK-Related Kinases , 2006, Science's STKE.

[160]  K. Timani,et al.  Activation of NF‐κB by the Full‐length Nucleocapsid Protein of the SARS Coronavirus , 2005, Acta biochimica et biophysica Sinica.

[161]  Anton Yuryev,et al.  Extracting human protein interactions from MEDLINE using a full-sentence parser , 2004, Bioinform..

[162]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[163]  Terence P. Speed,et al.  A comparison of normalization methods for high density oligonucleotide array data based on variance and bias , 2003, Bioinform..

[164]  Hartmut Bossel,et al.  Modeling and simulation , 1994 .