Model parameterization, prior distributions, and the general time-reversible model in Bayesian phylogenetics.
暂无分享,去创建一个
[1] M. Suchard,et al. Testing a molecular clock without an outgroup: derivations of induced priors on branch-length restrictions in a Bayesian framework. , 2003, Systematic biology.
[2] Derrick J. Zwickl,et al. Phylogenetic relationships of the dwarf boas and a comparison of Bayesian and bootstrap measures of phylogenetic support. , 2002, Molecular phylogenetics and evolution.
[3] M. Kimura. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences , 1980, Journal of Molecular Evolution.
[4] Kunkel Jm,et al. Spontaneous subclavain vein thrombosis: a successful combined approach of local thrombolytic therapy followed by first rib resection. , 1989 .
[5] A. Zharkikh. Estimation of evolutionary distances between nucleotide sequences , 1994, Journal of Molecular Evolution.
[6] H. Kishino,et al. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA , 2005, Journal of Molecular Evolution.
[7] Ziheng Yang,et al. PAML: a program package for phylogenetic analysis by maximum likelihood , 1997, Comput. Appl. Biosci..
[8] H. Jeffreys. An invariant form for the prior probability in estimation problems , 1946, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[9] S. Tavaré. Some probabilistic and statistical problems in the analysis of DNA sequences , 1986 .
[10] B. Larget,et al. Markov Chain Monte Carlo Algorithms for the Bayesian Analysis of Phylogenetic Trees , 2000 .
[11] H. Akaike. A new look at the Bayes procedure , 1978 .
[12] J. Q. Smith,et al. 1. Bayesian Statistics 4 , 1993 .
[13] Nozer D. Singpurwalla,et al. Non-informative priors do not exist A dialogue with José M. Bernardo , 1997 .
[14] Marco Bernardo,et al. Noninformative Priors Do Not Exist: A Discussion with Jos , 1997 .
[15] Andrew Rambaut,et al. Seq-Gen: an application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees , 1997, Comput. Appl. Biosci..
[16] G. C. Tiao,et al. Bayesian inference in statistical analysis , 1973 .
[17] Hani Doss,et al. Phylogenetic Tree Construction using Markov Chain , 1996 .
[18] G. Serio,et al. A new method for calculating evolutionary substitution rates , 2005, Journal of Molecular Evolution.
[19] B. Rannala. Identi(cid:142)ability of Parameters in MCMC Bayesian Inference of Phylogeny , 2002 .
[20] Z. Yang,et al. Maximum-likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. , 1993, Molecular biology and evolution.
[21] Sanford Weisberg,et al. Computing science and statistics : proceedings of the 30th Symposium on the Interface, Minneapolis, Minnesota, May 13-16, 1998 : dimension reduction, computational complexity and information , 1998 .
[22] M. P. Cummings,et al. PAUP* Phylogenetic analysis using parsimony (*and other methods) Version 4 , 2000 .
[23] D. Ord,et al. PAUP:Phylogenetic analysis using parsi-mony , 1993 .
[24] C. Geyer. Markov Chain Monte Carlo Maximum Likelihood , 1991 .
[25] John P. Huelsenbeck,et al. MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..
[26] J. Huelsenbeck,et al. MRBAYES : Bayesian inference of phylogeny , 2001 .
[27] L. Wasserman,et al. The Selection of Prior Distributions by Formal Rules , 1996 .
[28] P. Cassette,et al. Development of a Reference , 1983 .
[29] Luke Tierney. Markov Chain Monte Carlo Algorithms , 2006 .