Electron transfer dynamics and yield from gold nanoparticle to different semiconductors induced by plasmon band excitation

[1]  C. Clavero,et al.  Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices , 2014, Nature Photonics.

[2]  A. Furube,et al.  Ultrafast plasmon induced electron injection mechanism in gold–TiO2 nanoparticle system , 2013 .

[3]  A. Furube,et al.  Plasmon-Induced Charge Separation and Recombination Dynamics in Gold−TiO2 Nanoparticle Systems: Dependence on TiO2 Particle Size , 2009 .

[4]  D. Beattie,et al.  Functionalized gold nanoparticles: synthesis, structure and colloid stability. , 2009, Journal of colloid and interface science.

[5]  A. Furube,et al.  Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles. , 2007, Journal of the American Chemical Society.

[6]  Eiji Suzuki,et al.  Highly efficient dye-sensitized SnO2 solar cells having sufficient electron diffusion length , 2007 .

[7]  P. Jain,et al.  Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. , 2006, The journal of physical chemistry. B.

[8]  Tetsu Tatsuma,et al.  Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. , 2005, Journal of the American Chemical Society.

[9]  E. Yu,et al.  Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles , 2005 .

[10]  Hironori Arakawa,et al.  Ultrafast Direct and Indirect Electron-Injection Processes in a Photoexcited Dye-Sensitized Nanocrystalline Zinc Oxide Film: The Importance of Exciplex Intermediates at the Surface , 2004 .

[11]  Hironori Arakawa,et al.  Efficiencies of Electron Injection from Excited N3 Dye into Nanocrystalline Semiconductor (ZrO2, TiO2, ZnO, Nb2O5, SnO2, In2O3) Films , 2004 .

[12]  P. Kamat,et al.  Charge Distribution between UV-Irradiated TiO2 and Gold Nanoparticles: Determination of Shift in the Fermi Level , 2003 .

[13]  Eric W. McFarland,et al.  A photovoltaic device structure based on internal electron emission , 2003, Nature.

[14]  T. Lian,et al.  Effect of Trap States on Interfacial Electron Transfer between Molecular Absorbates and Semiconductor Nanoparticles , 2002 .

[15]  M. El-Sayed,et al.  Hot Electron Relaxation Dynamics of Gold Nanoparticles Embedded in MgSO4 Powder Compared To Solution: The Effect of the Surrounding Medium , 2002 .

[16]  Paul Mulvaney,et al.  Fermi Level Equilibration in Quantum Dot−Metal Nanojunctions† , 2001 .

[17]  D. Klug,et al.  Trap-limited recombination in dye-sensitized nanocrystalline metal oxide electrodes , 2001 .

[18]  John B. Asbury,et al.  Ultrafast Electron Transfer Dynamics from Molecular Adsorbates to Semiconductor Nanocrystalline Thin Films , 2001 .

[19]  M. El-Sayed,et al.  Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods , 1999 .

[20]  E. Meulenkamp ELECTRON TRANSPORT IN NANOPARTICULATE ZNO FILMS , 1999 .

[21]  C. R. Crowell,et al.  Erratum: Quantum‐Mechanical Reflection of Electrons at Metal‐Semiconductor Barriers: Electron Transport in Semiconductor‐Metal‐Semiconductor Structures , 1966 .

[22]  R. H. Ritchie Plasma Losses by Fast Electrons in Thin Films , 1957 .

[23]  Peter Nordlander,et al.  Plasmon-induced hot carrier science and technology. , 2015, Nature nanotechnology.

[24]  Allen J. Bard,et al.  Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen , 1995 .