A Review of Hybrid High-Order Methods: Formulations, Computational Aspects, Comparison with Other Methods

Hybrid High-Order (HHO) methods are formulated in terms of discrete unknowns attached to mesh faces and cells (hence, the term hybrid), and these unknowns are polynomials of arbitrary order k>=0 (hence, the term high-order). HHO methods are devised from local reconstruction operators and a local stabilization term. The discrete problem is assembled cellwise, and cell-based unknowns can be eliminated locally by static condensation. HHO methods support general meshes, are locally conservative, and allow for a robust treatment of physical parameters in various situations, e.g., heterogeneous/anisotropic diffusion, quasi-incompressible linear elasticity, and advection-dominated transport. This paper reviews HHO methods for a variable-diffusion model problem with nonhomogeneous, mixed Dirichlet–Neumann boundary conditions, including both primal and mixed formulations. Links with other discretization methods from the literature are discussed.

[1]  Diego Paredes,et al.  A family of Multiscale Hybrid-Mixed finite element methods for the Darcy equation with rough coefficients , 2013, J. Comput. Phys..

[2]  Alexandre Ern,et al.  Low-order reconstruction operators on polyhedral meshes: application to compatible discrete operator schemes , 2015, Comput. Aided Geom. Des..

[3]  Monique Dauge,et al.  Koiter Estimate Revisited , 2010 .

[4]  A. Ern,et al.  A Hybrid High-Order method for the incompressible Navier-Stokes equations based on Temam's device , 2018, J. Comput. Phys..

[5]  R. Eymard,et al.  3D Benchmark on Discretization Schemes for Anisotropic Diffusion Problems on General Grids , 2008 .

[6]  Gianmarco Manzini,et al.  A high-order mimetic method on unstructured polyhedral meshes for the diffusion equation , 2014, J. Comput. Phys..

[7]  K. Lipnikov,et al.  The nonconforming virtual element method , 2014, 1405.3741.

[8]  Lorenzo Codecasa,et al.  A new set of basis functions for the discrete geometric approach , 2010, J. Comput. Phys..

[9]  D. A. Pietro Cell centered Galerkin methods for diffusive problems , 2012 .

[10]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[11]  Alexandre Ern,et al.  Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods , 2016 .

[12]  P. Houston,et al.  hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes , 2017 .

[13]  Long Chen FINITE VOLUME METHODS , 2011 .

[14]  Alexandre Ern,et al.  Analysis of Compatible Discrete Operator Schemes for the Stokes Equations on Polyhedral Meshes , 2014, ArXiv.

[15]  Raytcho D. Lazarov,et al.  Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..

[16]  Pascal Omnes,et al.  A FINITE VOLUME METHOD FOR THE LAPLACE EQUATION ON ALMOST ARBITRARY TWO-DIMENSIONAL GRIDS , 2005 .

[17]  Jean-Luc Guermond,et al.  Discontinuous Galerkin Methods for Friedrichs' Systems. I. General theory , 2006, SIAM J. Numer. Anal..

[18]  Alexandre Ern,et al.  Analysis of Compatible Discrete Operator schemes for elliptic problems on polyhedral meshes , 2012, 1211.3354.

[19]  Alexandre Ern,et al.  Hybrid high-order methods for variable-diffusion problems on general meshes , 2015 .

[20]  Gianmarco Manzini,et al.  The Mimetic Finite Difference Method for Elliptic Problems , 2014 .

[21]  Thierry Gallouët,et al.  GRADIENT SCHEMES: A GENERIC FRAMEWORK FOR THE DISCRETISATION OF LINEAR, NONLINEAR AND NONLOCAL ELLIPTIC AND PARABOLIC EQUATIONS , 2013 .

[22]  P. Tesini,et al.  On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations , 2012, J. Comput. Phys..

[23]  Junping Wang,et al.  A weak Galerkin mixed finite element method for second order elliptic problems , 2012, Math. Comput..

[24]  Jérôme Droniou,et al.  A Hybrid High-Order method for Leray-Lions elliptic equations on general meshes , 2015, Math. Comput..

[25]  Equilibrated tractions for the Hybrid High-Order method , 2014, 1411.0094.

[26]  F. Brezzi,et al.  Discontinuous Galerkin approximations for elliptic problems , 2000 .

[27]  Junping Wang,et al.  A weak Galerkin finite element method for second-order elliptic problems , 2011, J. Comput. Appl. Math..

[28]  R. Eymard,et al.  Discretisation of heterogeneous and anisotropic diffusion problems on general non-conforming meshes. SUSHI: a scheme using stabilisation and hybrid interfaces , 2008, 0801.1430.

[29]  Robert Eymard,et al.  A mixed finite volume scheme for anisotropic diffusion problems on any grid , 2006, Numerische Mathematik.

[30]  Alexandre Ern,et al.  A Discontinuous-Skeletal Method for Advection-Diffusion-Reaction on General Meshes , 2015, SIAM J. Numer. Anal..

[31]  Alexandre Ern,et al.  An Arbitrary-Order and Compact-Stencil Discretization of Diffusion on General Meshes Based on Local Reconstruction Operators , 2014, Comput. Methods Appl. Math..

[32]  Lourenço Beirão da Veiga,et al.  Virtual Elements for Linear Elasticity Problems , 2013, SIAM J. Numer. Anal..

[33]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[34]  A. Ern,et al.  Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .

[35]  F. Brezzi,et al.  A FAMILY OF MIMETIC FINITE DIFFERENCE METHODS ON POLYGONAL AND POLYHEDRAL MESHES , 2005 .

[36]  J. Guermond,et al.  DISCONTINUOUS GALERKIN METHODS FOR FRIEDRICHS , 2006 .

[37]  Franco Brezzi,et al.  Virtual Element Methods for plate bending problems , 2013 .

[38]  Stefano Giani,et al.  hp-Version Composite Discontinuous Galerkin Methods for Elliptic Problems on Complicated Domains , 2013, SIAM J. Sci. Comput..

[39]  Daniele A. Di Pietro,et al.  Hybridization of Mixed High-Order Methods on General Meshes and Application to the Stokes Equations , 2015, Comput. Methods Appl. Math..

[40]  R. Eymard,et al.  A UNIFIED APPROACH TO MIMETIC FINITE DIFFERENCE, HYBRID FINITE VOLUME AND MIXED FINITE VOLUME METHODS , 2008, 0812.2097.

[41]  A. Ern,et al.  Arbitrary-order mixed methods for heterogeneous anisotropic diffusion on general meshes , 2013 .

[42]  Konstantin Lipnikov,et al.  Convergence of the Mimetic Finite Difference Method for Diffusion Problems on Polyhedral Meshes , 2005, SIAM J. Numer. Anal..

[43]  Diego Paredes,et al.  Multiscale Hybrid-Mixed Method , 2013, SIAM J. Numer. Anal..

[44]  Ilaria Perugia,et al.  An A Priori Error Analysis of the Local Discontinuous Galerkin Method for Elliptic Problems , 2000, SIAM J. Numer. Anal..

[45]  Daniele A. Di Pietro,et al.  An extension of the Crouzeix-Raviart space to general meshes with application to quasi-incompressible linear elasticity and Stokes flow , 2014, Math. Comput..