Tensor principal component analysis via convex optimization

This paper is concerned with the computation of the principal components for a general tensor, known as the tensor principal component analysis (PCA) problem. We show that the general tensor PCA problem is reducible to its special case where the tensor in question is super-symmetric with an even degree. In that case, the tensor can be embedded into a symmetric matrix. We prove that if the tensor is rank-one, then the embedded matrix must be rank-one too, and vice versa. The tensor PCA problem can thus be solved by means of matrix optimization under a rank-one constraint, for which we propose two solution methods: (1) imposing a nuclear norm penalty in the objective to enforce a low-rank solution; (2) relaxing the rank-one constraint by semidefinite programming. Interestingly, our experiments show that both methods can yield a rank-one solution for almost all the randomly generated instances, in which case solving the original tensor PCA problem to optimality. To further cope with the size of the resulting convex optimization models, we propose to use the alternating direction method of multipliers, which reduces significantly the computational efforts. Various extensions of the model are considered as well.

[1]  Junfeng Yang,et al.  Alternating Direction Algorithms for 1-Problems in Compressive Sensing , 2009, SIAM J. Sci. Comput..

[2]  Shuzhong Zhang,et al.  Maximum Block Improvement and Polynomial Optimization , 2012, SIAM J. Optim..

[3]  Fei Wang,et al.  Z-eigenvalue methods for a global polynomial optimization problem , 2009, Math. Program..

[4]  Michael Greenacre,et al.  Multiway data analysis , 1992 .

[5]  Pablo A. Parrilo,et al.  Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..

[6]  L. Qi,et al.  Higher Order Positive Semidefinite Diffusion Tensor Imaging , 2010, SIAM J. Imaging Sci..

[7]  Johan Håstad,et al.  Tensor Rank is NP-Complete , 1989, ICALP.

[8]  Xiaoming Yuan,et al.  Alternating Direction Method for Covariance Selection Models , 2011, Journal of Scientific Computing.

[9]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[10]  Phillip A. Regalia,et al.  On the Best Rank-1 Approximation of Higher-Order Supersymmetric Tensors , 2001, SIAM J. Matrix Anal. Appl..

[11]  N. Ahuja,et al.  Compact representation of multidimensional data using tensor rank-one decomposition , 2004, ICPR 2004.

[12]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2009, Found. Comput. Math..

[13]  Emmanuel J. Candès,et al.  The Power of Convex Relaxation: Near-Optimal Matrix Completion , 2009, IEEE Transactions on Information Theory.

[14]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[15]  Didier Henrion,et al.  GloptiPoly 3: moments, optimization and semidefinite programming , 2007, Optim. Methods Softw..

[16]  Xiaoming Yuan,et al.  Alternating Direction Methods for Sparse Covariance Selection * , 2009 .

[17]  Liqun Qi,et al.  Eigenvalues of a real supersymmetric tensor , 2005, J. Symb. Comput..

[18]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[19]  Jonathan Eckstein Splitting methods for monotone operators with applications to parallel optimization , 1989 .

[20]  A. Agresti,et al.  Multiway Data Analysis , 1989 .

[21]  P. Comon,et al.  A polynomial based approach to extract the maxima of an antipodally symmetric spherical function and its application to extract fiber directions from the Orientation Distribution Function in Diffusion MRI , 2008 .

[22]  Jean B. Lasserre,et al.  Polynomials nonnegative on a grid and discrete optimization , 2001 .

[23]  F. L. Hitchcock Multiple Invariants and Generalized Rank of a P‐Way Matrix or Tensor , 1928 .

[24]  Jieping Ye,et al.  Tensor Completion for Estimating Missing Values in Visual Data , 2013, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[26]  Gene H. Golub,et al.  Symmetric Tensors and Symmetric Tensor Rank , 2008, SIAM J. Matrix Anal. Appl..

[27]  J. Kruskal Rank, decomposition, and uniqueness for 3-way and n -way arrays , 1989 .

[28]  Shiqian Ma,et al.  Fixed point and Bregman iterative methods for matrix rank minimization , 2009, Math. Program..

[29]  R. Glowinski,et al.  Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .

[30]  D. Gabay Applications of the method of multipliers to variational inequalities , 1983 .

[31]  Shiqian Ma Alternating Direction Method of Multipliers for Sparse Principal Component Analysis , 2011, Journal of the Operations Research Society of China.

[32]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[33]  H. H. Rachford,et al.  On the numerical solution of heat conduction problems in two and three space variables , 1956 .

[34]  Junfeng Yang,et al.  A New Alternating Minimization Algorithm for Total Variation Image Reconstruction , 2008, SIAM J. Imaging Sci..

[35]  Tamara G. Kolda,et al.  Shifted Power Method for Computing Tensor Eigenpairs , 2010, SIAM J. Matrix Anal. Appl..

[36]  Hisashi Kashima,et al.  Statistical Performance of Convex Tensor Decomposition , 2011, NIPS.

[37]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[38]  F. L. Hitchcock The Expression of a Tensor or a Polyadic as a Sum of Products , 1927 .

[39]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[40]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[41]  Pablo A. Parrilo,et al.  The Convex Geometry of Linear Inverse Problems , 2010, Foundations of Computational Mathematics.

[42]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[43]  Lester W. Mackey,et al.  Deflation Methods for Sparse PCA , 2008, NIPS.

[44]  Lek-Heng Lim,et al.  Singular values and eigenvalues of tensors: a variational approach , 2005, 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005..

[45]  H. H. Rachford,et al.  The Numerical Solution of Parabolic and Elliptic Differential Equations , 1955 .

[46]  Shiqian Ma,et al.  Sparse Inverse Covariance Selection via Alternating Linearization Methods , 2010, NIPS.

[47]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[48]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[49]  Chen Ling,et al.  Biquadratic Optimization Over Unit Spheres and Semidefinite Programming Relaxations , 2009, SIAM J. Optim..

[50]  P. Parrilo Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .

[51]  Luke Bloy,et al.  On Computing the Underlying Fiber Directions from the Diffusion Orientation Distribution Function , 2008, MICCAI.

[52]  Xiaoming Yuan,et al.  Recovering Low-Rank and Sparse Components of Matrices from Incomplete and Noisy Observations , 2011, SIAM J. Optim..

[53]  B. Recht,et al.  Tensor completion and low-n-rank tensor recovery via convex optimization , 2011 .

[54]  Liqun Qi,et al.  Algebraic connectivity of an even uniform hypergraph , 2012, J. Comb. Optim..

[55]  M. Fortin,et al.  Augmented Lagrangian methods : applications to the numerical solution of boundary-value problems , 1983 .

[56]  Anthony Sudbery,et al.  The geometric measure of multipartite entanglement and the singular values of a hypermatrix , 2010 .

[57]  Wotao Yin,et al.  Alternating direction augmented Lagrangian methods for semidefinite programming , 2010, Math. Program. Comput..

[58]  J. Chisholm Approximation by Sequences of Padé Approximants in Regions of Meromorphy , 1966 .

[59]  P. Lions,et al.  Splitting Algorithms for the Sum of Two Nonlinear Operators , 1979 .

[60]  Farid Alizadeh,et al.  Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization , 1995, SIAM J. Optim..

[61]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..