Tensor principal component analysis via convex optimization
暂无分享,去创建一个
[1] Junfeng Yang,et al. Alternating Direction Algorithms for 1-Problems in Compressive Sensing , 2009, SIAM J. Sci. Comput..
[2] Shuzhong Zhang,et al. Maximum Block Improvement and Polynomial Optimization , 2012, SIAM J. Optim..
[3] Fei Wang,et al. Z-eigenvalue methods for a global polynomial optimization problem , 2009, Math. Program..
[4] Michael Greenacre,et al. Multiway data analysis , 1992 .
[5] Pablo A. Parrilo,et al. Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..
[6] L. Qi,et al. Higher Order Positive Semidefinite Diffusion Tensor Imaging , 2010, SIAM J. Imaging Sci..
[7] Johan Håstad,et al. Tensor Rank is NP-Complete , 1989, ICALP.
[8] Xiaoming Yuan,et al. Alternating Direction Method for Covariance Selection Models , 2011, Journal of Scientific Computing.
[9] Tom Goldstein,et al. The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..
[10] Phillip A. Regalia,et al. On the Best Rank-1 Approximation of Higher-Order Supersymmetric Tensors , 2001, SIAM J. Matrix Anal. Appl..
[11] N. Ahuja,et al. Compact representation of multidimensional data using tensor rank-one decomposition , 2004, ICPR 2004.
[12] Emmanuel J. Candès,et al. Exact Matrix Completion via Convex Optimization , 2009, Found. Comput. Math..
[13] Emmanuel J. Candès,et al. The Power of Convex Relaxation: Near-Optimal Matrix Completion , 2009, IEEE Transactions on Information Theory.
[14] Richard A. Harshman,et al. Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .
[15] Didier Henrion,et al. GloptiPoly 3: moments, optimization and semidefinite programming , 2007, Optim. Methods Softw..
[16] Xiaoming Yuan,et al. Alternating Direction Methods for Sparse Covariance Selection * , 2009 .
[17] Liqun Qi,et al. Eigenvalues of a real supersymmetric tensor , 2005, J. Symb. Comput..
[18] David L Donoho,et al. Compressed sensing , 2006, IEEE Transactions on Information Theory.
[19] Jonathan Eckstein. Splitting methods for monotone operators with applications to parallel optimization , 1989 .
[20] A. Agresti,et al. Multiway Data Analysis , 1989 .
[21] P. Comon,et al. A polynomial based approach to extract the maxima of an antipodally symmetric spherical function and its application to extract fiber directions from the Orientation Distribution Function in Diffusion MRI , 2008 .
[22] Jean B. Lasserre,et al. Polynomials nonnegative on a grid and discrete optimization , 2001 .
[23] F. L. Hitchcock. Multiple Invariants and Generalized Rank of a P‐Way Matrix or Tensor , 1928 .
[24] Jieping Ye,et al. Tensor Completion for Estimating Missing Values in Visual Data , 2013, IEEE Trans. Pattern Anal. Mach. Intell..
[25] Pablo A. Parrilo,et al. Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..
[26] Gene H. Golub,et al. Symmetric Tensors and Symmetric Tensor Rank , 2008, SIAM J. Matrix Anal. Appl..
[27] J. Kruskal. Rank, decomposition, and uniqueness for 3-way and n -way arrays , 1989 .
[28] Shiqian Ma,et al. Fixed point and Bregman iterative methods for matrix rank minimization , 2009, Math. Program..
[29] R. Glowinski,et al. Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .
[30] D. Gabay. Applications of the method of multipliers to variational inequalities , 1983 .
[31] Shiqian Ma. Alternating Direction Method of Multipliers for Sparse Principal Component Analysis , 2011, Journal of the Operations Research Society of China.
[32] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[33] H. H. Rachford,et al. On the numerical solution of heat conduction problems in two and three space variables , 1956 .
[34] Junfeng Yang,et al. A New Alternating Minimization Algorithm for Total Variation Image Reconstruction , 2008, SIAM J. Imaging Sci..
[35] Tamara G. Kolda,et al. Shifted Power Method for Computing Tensor Eigenpairs , 2010, SIAM J. Matrix Anal. Appl..
[36] Hisashi Kashima,et al. Statistical Performance of Convex Tensor Decomposition , 2011, NIPS.
[37] J. Chang,et al. Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .
[38] F. L. Hitchcock. The Expression of a Tensor or a Polyadic as a Sum of Products , 1927 .
[39] David P. Williamson,et al. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.
[40] Stephen P. Boyd,et al. Semidefinite Programming , 1996, SIAM Rev..
[41] Pablo A. Parrilo,et al. The Convex Geometry of Linear Inverse Problems , 2010, Foundations of Computational Mathematics.
[42] Emmanuel J. Candès,et al. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.
[43] Lester W. Mackey,et al. Deflation Methods for Sparse PCA , 2008, NIPS.
[44] Lek-Heng Lim,et al. Singular values and eigenvalues of tensors: a variational approach , 2005, 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005..
[45] H. H. Rachford,et al. The Numerical Solution of Parabolic and Elliptic Differential Equations , 1955 .
[46] Shiqian Ma,et al. Sparse Inverse Covariance Selection via Alternating Linearization Methods , 2010, NIPS.
[47] Jean B. Lasserre,et al. Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..
[48] Dimitri P. Bertsekas,et al. On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..
[49] Chen Ling,et al. Biquadratic Optimization Over Unit Spheres and Semidefinite Programming Relaxations , 2009, SIAM J. Optim..
[50] P. Parrilo. Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .
[51] Luke Bloy,et al. On Computing the Underlying Fiber Directions from the Diffusion Orientation Distribution Function , 2008, MICCAI.
[52] Xiaoming Yuan,et al. Recovering Low-Rank and Sparse Components of Matrices from Incomplete and Noisy Observations , 2011, SIAM J. Optim..
[53] B. Recht,et al. Tensor completion and low-n-rank tensor recovery via convex optimization , 2011 .
[54] Liqun Qi,et al. Algebraic connectivity of an even uniform hypergraph , 2012, J. Comb. Optim..
[55] M. Fortin,et al. Augmented Lagrangian methods : applications to the numerical solution of boundary-value problems , 1983 .
[56] Anthony Sudbery,et al. The geometric measure of multipartite entanglement and the singular values of a hypermatrix , 2010 .
[57] Wotao Yin,et al. Alternating direction augmented Lagrangian methods for semidefinite programming , 2010, Math. Program. Comput..
[58] J. Chisholm. Approximation by Sequences of Padé Approximants in Regions of Meromorphy , 1966 .
[59] P. Lions,et al. Splitting Algorithms for the Sum of Two Nonlinear Operators , 1979 .
[60] Farid Alizadeh,et al. Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization , 1995, SIAM J. Optim..
[61] Stephen P. Boyd,et al. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..