A Multichannel Deep Neural Network Model Analyzing Multiscale Functional Brain Connectome Data for Attention Deficit Hyperactivity Disorder Detection.

Purpose To develop a multichannel deep neural network (mcDNN) classification model based on multiscale brain functional connectome data and demonstrate the value of this model by using attention deficit hyperactivity disorder (ADHD) detection as an example. Materials and Methods In this retrospective case-control study, existing data from the Neuro Bureau ADHD-200 dataset consisting of 973 participants were used. Multiscale functional brain connectomes based on both anatomic and functional criteria were constructed. The mcDNN model used the multiscale brain connectome data and personal characteristic data (PCD) as joint features to detect ADHD and identify the most predictive brain connectome features for ADHD diagnosis. The mcDNN model was compared with single-channel deep neural network (scDNN) models and the classification performance was evaluated through cross-validation and hold-out validation with the metrics of accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC). Results In the cross-validation, the mcDNN model using combined features (fusion of the multiscale brain connectome data and PCD) achieved the best performance in ADHD detection with an AUC of 0.82 (95% confidence interval [CI]: 0.80, 0.83) compared with scDNN models using the features of the brain connectome at each individual scale and PCD, independently. In the hold-out validation, the mcDNN model achieved an AUC of 0.74 (95% CI: 0.73, 0.76). Conclusion An mcDNN model was developed for multiscale brain functional connectome data, and its utility for ADHD detection was demonstrated. By fusing the multiscale brain connectome data, the mcDNN model improved ADHD detection performance considerably over the use of a single scale.© RSNA, 2019.