Schrödinger's smoke

We describe a new approach for the purely Eulerian simulation of incompressible fluids. In it, the fluid state is represented by a C2-valued wave function evolving under the Schrödinger equation subject to incompressibility constraints. The underlying dynamical system is Hamiltonian and governed by the kinetic energy of the fluid together with an energy of Landau-Lifshitz type. The latter ensures that dynamics due to thin vortical structures, all important for visual simulation, are faithfully reproduced. This enables robust simulation of intricate phenomena such as vortical wakes and interacting vortex filaments, even on modestly sized grids. Our implementation uses a simple splitting method for time integration, employing the FFT for Schrödinger evolution as well as constraint projection. Using a standard penalty method we also allow arbitrary obstacles. The resulting algorithm is simple, unconditionally stable, and efficient. In particular it does not require any Lagrangian techniques for advection or to counteract the loss of vorticity. We demonstrate its use in a variety of scenarios, compare it with experiments, and evaluate it against benchmark tests. A full implementation is included in the ancillary materials.

[1]  Hyeong-Seok Ko,et al.  Stretching and wiggling liquids , 2009, ACM Trans. Graph..

[2]  R. Abraham,et al.  Manifolds, Tensor Analysis, and Applications , 1983 .

[3]  A. L. Sorokin Madelung transformation for vortex flows of a perfect liquid , 2001 .

[4]  Nigel R. Cooper,et al.  Propagating Magnetic Vortex Rings in Ferromagnets , 1999 .

[5]  Mark J. Stock,et al.  Impact of a vortex ring on a density interface using a regularized inviscid vortex sheet method , 2008, J. Comput. Phys..

[6]  G. Pedrizzetti,et al.  Vortex Dynamics , 2011 .

[7]  Luigi Sante Da Rios Sul moto d’un liquido indefinito con un filetto vorticoso di forma qualunque , 1906 .

[8]  H. Hasimoto,et al.  A soliton on a vortex filament , 1972, Journal of Fluid Mechanics.

[9]  Ashton S. Bradley,et al.  Identifying a Superfluid Reynolds Number via Dynamical Similarity. , 2014, Physical review letters.

[10]  Paul Sutcliffe Vortex rings in ferromagnets: Numerical simulations of the time-dependent three-dimensional Landau-L , 2007 .

[11]  Robert Bridson,et al.  Curl-noise for procedural fluid flow , 2007, SIGGRAPH 2007.

[12]  Petros Koumoutsakos,et al.  Vortex Methods: Theory and Practice , 2000 .

[13]  Tee Tai Lim A note on the leapfrogging between two coaxial vortex rings at low Reynolds numbers , 1997 .

[14]  Frisch,et al.  Transition to dissipation in a model of superflow. , 1992, Physical review letters.

[15]  Schwarz Three-dimensional vortex dynamics in superfluid 4He: Line-line and line-boundary interactions. , 1985, Physical review. B, Condensed matter.

[16]  G. W. Stagg,et al.  Quantum analogues of classical wakes in Bose–Einstein condensates , 2014, 1401.4041.

[17]  E. Kuznetsov,et al.  On the topological meaning of canonical Clebsch variables , 1980 .

[18]  Kazuki Sasaki,et al.  Bénard-von Kármán vortex street in a Bose-Einstein condensate. , 2010, Physical review letters.

[19]  Peter Schröder,et al.  Smoke rings from smoke , 2014, ACM Trans. Graph..

[20]  Keenan Crane,et al.  Stripe patterns on surfaces , 2015, ACM Trans. Graph..

[21]  Lena Jaeger,et al.  Progress In Low Temperature Physics , 2016 .

[22]  E. Madelung,et al.  Quantentheorie in hydrodynamischer Form , 1927 .

[23]  W. Cheney,et al.  Proximity maps for convex sets , 1959 .

[24]  Awad H. Al-Mohy,et al.  Computing the Action of the Matrix Exponential, with an Application to Exponential Integrators , 2011, SIAM J. Sci. Comput..

[25]  Richard Phillips Feynman,et al.  Chapter II Application of Quantum Mechanics to Liquid Helium , 1955 .

[26]  Arthur Cayley,et al.  The Collected Mathematical Papers: On certain results relating to Quaternions , 2009 .

[27]  Eftychios Sifakis,et al.  A parallel multigrid Poisson solver for fluids simulation on large grids , 2010, SCA '10.

[28]  Ronald Fedkiw,et al.  An Unconditionally Stable MacCormack Method , 2008, J. Sci. Comput..

[29]  H. E. Hall,et al.  The rotation of liquid helium II II. The theory of mutual friction in uniformly rotating helium II , 1956, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[30]  L. Onsager,et al.  Statistical hydrodynamics , 1949 .

[31]  D V Osborne,et al.  The Rotation of Liquid Helium II , 1950 .

[32]  Markus H. Gross,et al.  Lagrangian vortex sheets for animating fluids , 2012, ACM Trans. Graph..

[33]  Yiying Tong,et al.  Discrete differential forms for computational modeling , 2005, SIGGRAPH Courses.

[34]  J. Steinhoff,et al.  Modification of the Euler equations for ‘‘vorticity confinement’’: Application to the computation of interacting vortex rings , 1994 .

[35]  David W. Lyons An Elementary Introduction to the Hopf Fibration , 2003, 2212.01642.

[36]  T. M. Sanders,et al.  DETECTION OF SINGLE QUANTIZED VORTEX LINES IN ROTATING He II. , 1969 .

[37]  E. Madelung,et al.  Eine anschauliche Deutung der Gleichung von Schrödinger , 1926, Naturwissenschaften.

[38]  Doug L. James,et al.  Wavelet turbulence for fluid simulation , 2008, SIGGRAPH 2008.

[39]  Robert Bridson,et al.  Curl-noise for procedural fluid flow , 2007, ACM Trans. Graph..

[40]  Ulrich Pinkall,et al.  Filament-based smoke with vortex shedding and variational reconnection , 2010, ACM Trans. Graph..

[41]  Xinwei Yu,et al.  A Level Set Formulation for the 3D Incompressible Euler Equations , 2005 .

[42]  Philippe Angot,et al.  A penalization method to take into account obstacles in incompressible viscous flows , 1999, Numerische Mathematik.

[43]  J. Xin,et al.  On the Incompressible Fluid Limit and the Vortex Motion Law of the Nonlinear Schrödinger Equation , 1999 .

[44]  Benjamin Favier,et al.  Numerical validation of the volume penalization method in three-dimensional pseudo-spectral simulations , 2012 .

[45]  William T. M. Irvine,et al.  Creation and dynamics of knotted vortices , 2012, Nature Physics.

[46]  Tee Tai Lim,et al.  An experimental study of a vortex ring interacting with an inclined wall , 1989 .

[47]  Gilles Carbou,et al.  Boundary layer for a penalization method for viscous incompressible flow , 2003, Advances in Differential Equations.

[48]  G. E. Volovik Classical and quantum regimes of superfluid turbulence , 2003 .

[49]  Diego Rossinelli,et al.  Flow simulations using particles: bridging computer graphics and CFD , 2008, SIGGRAPH '08.

[50]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[51]  H. Seifert,et al.  Über das Geschlecht von Knoten , 1935 .

[52]  Sang Il Park,et al.  Vortex fluid for gaseous phenomena , 2005, SCA '05.

[53]  Keenan Crane,et al.  Digital geometry processing with discrete exterior calculus , 2013, SIGGRAPH '13.

[54]  G. Schwarz Hodge Decomposition - A Method for Solving Boundary Value Problems , 1995 .

[55]  Daniel Spirn,et al.  Hydrodynamic Limit of the Gross-Pitaevskii Equation , 2013 .

[56]  I. Ventura Theory of Superfluidity , 1979 .

[57]  A. Clebsch,et al.  Ueber die Integration der hydrodynamischen Gleichungen. , 1859 .

[58]  V. Strouhal,et al.  Ueber eine besondere Art der Tonerregung , 1878 .

[59]  Yiying Tong,et al.  Stable, circulation-preserving, simplicial fluids , 2006, SIGGRAPH Courses.

[60]  Ronald Fedkiw,et al.  A vortex particle method for smoke, water and explosions , 2005, ACM Trans. Graph..

[61]  Robert Bridson,et al.  Linear-time smoke animation with vortex sheet meshes , 2012, SCA '12.

[62]  Antti J. Niemi,et al.  Leapfrogging vortex rings in the Landau–Lifshitz equation , 2014, 1402.6165.

[63]  A. Leonard Vortex methods for flow simulation , 1980 .

[64]  L. Rosenhead The Formation of Vortices from a Surface of Discontinuity , 1931 .

[65]  Ulrich Pinkall,et al.  Filament-based smoke with vortex shedding and variational reconnection , 2010, SIGGRAPH 2010.

[66]  H. Hopf,et al.  Über die Abbildungen der dreidimensionalen Sphäre auf die Kugelfläche , 1931 .

[67]  Jos Stam,et al.  Stable fluids , 1999, SIGGRAPH.

[68]  Ronald Fedkiw,et al.  Visual simulation of smoke , 2001, SIGGRAPH.

[69]  Robert Bridson,et al.  Restoring the missing vorticity in advection-projection fluid solvers , 2015, ACM Trans. Graph..

[70]  Heinz Hopf Über die Abbildungen der dreidimensionalen Sphäre auf die Kugelfläche , 1931 .

[71]  E. Gross Structure of a quantized vortex in boson systems , 1961 .

[72]  Lev Davidovich Landau,et al.  ON THE THEORY OF THE DISPERSION OF MAGNETIC PERMEABILITY IN FERROMAGNETIC BODIES , 1935 .

[73]  R. P. Feynman,et al.  T5 – APPLICATION OF QUANTUM MECHANICS TO LIQUID HELIUM* , 1971 .

[74]  M. Schönberg,et al.  On the hydrodynamical model of the quantum mechanics , 1954 .

[75]  Andrew J. Hanson,et al.  Visualizing quaternions , 2005, SIGGRAPH Courses.

[76]  N. Bogolyubov On the theory of superfluidity , 1947 .

[77]  Fabrice Neyret,et al.  Simulation of smoke based on vortex filament primitives , 2005, SCA '05.