Wavelet eigenvalue regression for n-variate operator fractional Brownian motion

In this contribution, we extend the methodology proposed in Abry and Didier (2017) to obtain the first joint estimator of the real parts of the Hurst eigenvalues of $n$-variate OFBM. The procedure consists of a wavelet regression on the log-eigenvalues of the sample wavelet spectrum. The estimator is shown to be consistent for any time reversible OFBM and, under stronger assumptions, also asymptotically normal starting from either continuous or discrete time measurements. Simulation studies establish the finite sample effectiveness of the methodology and illustrate its benefits compared to univariate-like (entrywise) analysis. As an application, we revisit the well-known self-similar character of Internet traffic by applying the proposed methodology to 4-variate time series of modern, high quality Internet traffic data. The analysis reveals the presence of a rich multivariate self-similarity structure.

[1]  M. Maejima,et al.  Operator-self-similar stable processes , 1994 .

[2]  V. K. Rohatgi,et al.  Operator self similar stochastic processes in Rd , 1981 .

[3]  Walter Willinger,et al.  Self-similar traffic and network dynamics , 2002, Proc. IEEE.

[4]  Jean-Marc Bardet,et al.  Statistical study of the wavelet analysis of fractional Brownian motion , 2002, IEEE Trans. Inf. Theory.

[5]  Akira Kato,et al.  Traffic Data Repository at the WIDE Project , 2000, USENIX Annual Technical Conference, FREENIX Track.

[6]  J. Mason,et al.  Operator-self-similar processes in a finite-dimensional space , 1982 .

[7]  P. Robinson Multiple Local Whittle Estimation in Stationary Systems , 2007, 0811.0948.

[8]  M. Meerschaert,et al.  Portfolio Modeling with Heavy Tailed Random Vectors , 2003 .

[9]  Peter Guttorp,et al.  Wavelet-based parameter estimation for polynomial contaminated fractionally differenced processes , 2005, IEEE Transactions on Signal Processing.

[10]  CONSISTENCY OF THE AVERAGED CROSS‐PERIODOGRAM IN LONG MEMORY SERIES , 1997 .

[11]  Onno J. Boxma,et al.  Fluid queues with long-tailed activity period distributions , 1997, Comput. Commun..

[12]  Yoshihiro Yajima Determination of Cointegrating Rank in Fractional Systems , 2001 .

[13]  Patrice Abry,et al.  Wavelets for the Analysis, Estimation, and Synthesis of Scaling Data , 2002 .

[14]  R. Dobrushin,et al.  Non-central limit theorems for non-linear functional of Gaussian fields , 1979 .

[15]  Patrick Flandrin,et al.  Wavelet analysis and synthesis of fractional Brownian motion , 1992, IEEE Trans. Inf. Theory.

[16]  Yimin Xiao Sample Path Properties of Anisotropic Gaussian Random Fields , 2009 .

[17]  S. Achard,et al.  Multivariate Wavelet Whittle Estimation in Long‐range Dependence , 2014, 1412.0391.

[18]  Q. Yao,et al.  On determination of cointegration ranks , 2009 .

[19]  M. Taqqu,et al.  Large-Sample Properties of Parameter Estimates for Strongly Dependent Stationary Gaussian Time Series , 1986 .

[20]  C. Granger,et al.  AN INTRODUCTION TO LONG‐MEMORY TIME SERIES MODELS AND FRACTIONAL DIFFERENCING , 1980 .

[21]  M. Clausel,et al.  An optimality result about sample path properties of Operator Scaling Gaussian Random Fields , 2013, 1302.0818.

[22]  D. Surgailis,et al.  Scaling transition for long-range dependent Gaussian random fields , 2014, 1409.2830.

[23]  Pierre-Olivier Amblard,et al.  Identification of the Multivariate Fractional Brownian Motion , 2011, IEEE Transactions on Signal Processing.

[24]  M. Taqqu Convergence of integrated processes of arbitrary Hermite rank , 1979 .

[25]  Frank Nielsen Local Whittle estimation of multi‐variate fractionally integrated processes , 2011 .

[26]  Domenico Marinucci,et al.  Weak convergence of multivariate fractional processes , 2000 .

[27]  M. Taqqu Weak convergence to fractional brownian motion and to the rosenblatt process , 1975, Advances in Applied Probability.

[28]  G. Didier,et al.  Two-step wavelet-based estimation for mixed Gaussian fractional processes , 2016, 1607.05167.

[29]  B. Mandelbrot Intermittent turbulence in self-similar cascades : divergence of high moments and dimension of the carrier , 2004 .

[30]  Gregory W. Wornell,et al.  Estimation of fractal signals from noisy measurements using wavelets , 1992, IEEE Trans. Signal Process..

[31]  Vladas Pipiras,et al.  Domain and range symmetries of operator fractional Brownian fields , 2016, 1609.01007.

[32]  P. Robinson Gaussian Semiparametric Estimation of Long Range Dependence , 1995 .

[33]  Mark M. Meerschaert,et al.  Moment estimator for random vectors with heavy tails , 1999 .

[34]  Patrice Abry,et al.  Testing fractal connectivity in multivariate long memory processes , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[35]  Walter Willinger,et al.  Self-Similar Network Traffic and Performance Evaluation , 2000 .

[36]  Vladas Pipiras,et al.  Long-Range Dependence and Self-Similarity , 2017 .

[37]  Elias Masry,et al.  The wavelet transform of stochastic processes with stationary increments and its application to fractional Brownian motion , 1993, IEEE Trans. Inf. Theory.

[38]  S. Mallat A wavelet tour of signal processing , 1998 .

[39]  Anne Philippe,et al.  Basic properties of the Multivariate Fractional Brownian Motion , 2010, 1007.0828.

[40]  Jan Beran,et al.  Statistics for long-memory processes , 1994 .

[41]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[42]  Walter Willinger,et al.  Self-similarity through high-variability: statistical analysis of Ethernet LAN traffic at the source level , 1997, TNET.

[43]  P. Robinson,et al.  Semiparametric inference in multivariate fractionally cointegrated systems , 2010 .

[44]  Praveen Kumar,et al.  Wavelets in Geophysics , 1994 .

[45]  Richard L. Smith,et al.  Asymptotic properties of computationally efficient alternative estimators for a class of multivariate normal models , 2007 .

[46]  Kensuke Fukuda,et al.  Seven Years and One Day: Sketching the Evolution of Internet Traffic , 2009, IEEE INFOCOM 2009.

[47]  J. Magnus On Differentiating Eigenvalues and Eigenvectors , 1985, Econometric Theory.

[48]  Walter Willinger,et al.  On the Self-Similar Nature of Ethernet Traffic ( extended version ) , 1995 .

[49]  Walter Willinger,et al.  A Bibliographical Guide to Self-Similar Traffic and Performance Modeling for Modern High-Speed Netwo , 1996 .

[50]  J. Magnus,et al.  Matrix Differential Calculus with Applications in Statistics and Econometrics (Revised Edition) , 1999 .

[51]  Determination of Cointegrating Rank in Partially Non-Stationary Processes Via a Generalised Von-Neumann Criterion , 2004 .

[52]  Kung-Sik Chan,et al.  Inference of Bivariate Long-memory Aggregate Time Series , 2018 .

[53]  Chae Young Lim,et al.  Local Whittle estimator for anisotropic random fields , 2009, J. Multivar. Anal..

[54]  Kensuke Fukuda,et al.  Scaling in Internet Traffic: A 14 Year and 3 Day Longitudinal Study, With Multiscale Analyses and Random Projections , 2017, IEEE/ACM Transactions on Networking.

[55]  Jan Beran,et al.  Long-Memory Processes: Probabilistic Properties and Statistical Methods , 2013 .

[56]  J. Magnus,et al.  Matrix Differential Calculus with Applications in Statistics and Econometrics , 1991 .

[57]  G. Didier,et al.  Exponents, Symmetry Groups and Classification of Operator Fractional Brownian Motions , 2011, Journal of Theoretical Probability.

[58]  David A. Benson,et al.  Predicting flow and transport in highly heterogeneous alluvial aquifers , 2014 .

[59]  Jean-Marc Bardet,et al.  Asymptotic behavior of the Whittle estimator for the increments of a Rosenblatt process , 2013, J. Multivar. Anal..

[60]  M. Nielsen,et al.  Fully Modified Narrow-Band Least Squares Estimation of Weak Fractional Cointegration , 2011 .

[61]  Yuzo Hosoya,et al.  A limit theory for long-range dependence and statistical inference on related models , 1997 .

[62]  Eric Moulines,et al.  Central limit theorem for the robust log-regression wavelet estimation of the memory parameter in the Gaussian semi-parametric context , 2007 .

[63]  J. Coeurjolly,et al.  Estimating the Parameters of a Fractional Brownian Motion by Discrete Variations of its Sample Paths , 2001 .

[64]  Yuzo Hosoya The quasi-likelihood approach to statistical inference on multiple time-series with long-range dependence☆ , 1996 .

[65]  Patrice Abry,et al.  Fast and exact synthesis of stationary multivariate Gaussian time series using circulant embedding , 2011, Signal Process..

[66]  Onno Boxma,et al.  The single server queue : heavy tails and heavy traffic , 2000 .

[67]  P. Major,et al.  Central limit theorems for non-linear functionals of Gaussian fields , 1983 .

[68]  Ladislav Kristoufek,et al.  Can the bivariate Hurst exponent be higher than an average of the separate Hurst exponents , 2015, 1501.02947.

[69]  Walter Willinger,et al.  Proof of a fundamental result in self-similar traffic modeling , 1997, CCRV.

[70]  Walter Willinger,et al.  On the self-similar nature of Ethernet traffic , 1993, SIGCOMM '93.

[71]  Patrice Abry,et al.  A Wavelet-Based Joint Estimator of the Parameters of Long-Range Dependence , 1999, IEEE Trans. Inf. Theory.

[72]  Sam Ouliaris,et al.  Testing for cointegration using principal components methods , 1988 .

[73]  Murad S. Taqqu,et al.  Semi-parametric estimation of the long-range dependence parameter : A survey , 2003 .

[74]  M. Taqqu,et al.  Wavelet estimation of the long memory parameter for Hermite polynomial of Gaussian processes , 2011, 1105.1011.

[75]  G. Pap,et al.  Parameter estimation of selfsimilarity exponents , 2008 .

[76]  G. Didier,et al.  Two-step wavelet-based estimation for Gaussian mixed fractional processes , 2018, Statistical Inference for Stochastic Processes.

[77]  S. Achard,et al.  Wavelet analysis of the multivariate fractional Brownian motion , 2010, 1007.2109.

[78]  Patrice Abry,et al.  Synthesis of multivariate stationary series with prescribed marginal distributions and covariance using circulant matrix embedding , 2011, Signal Process..

[79]  Katsumi Shimotsu Exact local Whittle estimation of fractionally cointegrated systems , 2012 .

[80]  Jean-Marc Bardet,et al.  A wavelet analysis of the Rosenblatt process: Chaos expansion and estimation of the self-similarity parameter , 2008, 0811.2664.

[81]  Yimin Xiao,et al.  Multivariate operator-self-similar random fields , 2011, 1104.0059.

[82]  Clifford M. Hurvich,et al.  The averaged periodogram estimator for a power law in coherency , 2011 .

[83]  Walter Willinger,et al.  Experimental queueing analysis with long-range dependent packet traffic , 1996, TNET.

[84]  G. Didier,et al.  Wavelet estimation for operator fractional Brownian motion , 2015, 1501.06094.

[85]  Kensuke Fukuda,et al.  Extracting hidden anomalies using sketch and non Gaussian multiresolution statistical detection procedures , 2007, LSAD '07.

[86]  V. Pipiras,et al.  DEFINITIONS AND REPRESENTATIONS OF MULTIVARIATE LONG‐RANGE DEPENDENT TIME SERIES , 2015 .

[87]  Kensuke Fukuda,et al.  A taxonomy of anomalies in backbone network traffic , 2014, 2014 International Wireless Communications and Mobile Computing Conference (IWCMC).

[88]  G. Didier,et al.  Exponents of operator self-similar random fields , 2016, 1608.04650.

[89]  L. Amaral,et al.  Multifractality in human heartbeat dynamics , 1998, Nature.

[90]  J. Mason,et al.  Sample Path Properties of Operator-Slef-Similar Gaussian Random Fields , 2002 .

[91]  J. Hualdea,et al.  Gaussian Pseudo-Maximum Likelihood Estimation of Fractional Time Series Models , 2006 .

[92]  Patrice Abry,et al.  Interplay between functional connectivity and scale-free dynamics in intrinsic fMRI networks , 2014, NeuroImage.

[93]  P. Robinson,et al.  Identifying Cointegration by Eigenanalysis , 2015, Journal of the American Statistical Association.

[94]  É. Moulines,et al.  Log-Periodogram Regression Of Time Series With Long Range Dependence , 1999 .

[95]  Eric Moulines,et al.  A wavelet whittle estimator of the memory parameter of a nonstationary Gaussian time series , 2008 .

[96]  Ilkka Norros,et al.  A storage model with self-similar input , 1994, Queueing Syst. Theory Appl..

[97]  Ladislav Kristoufek,et al.  Mixed-correlated ARFIMA processes for power-law cross-correlations , 2013, 1307.6046.

[98]  Asymptotic behavior of the quadratic variation of the sum of two Hermite processes of consecutive orders , 2014, 1402.1710.

[99]  Nelly Pustelnik,et al.  Non-Linear Wavelet Regression and Branch & Bound Optimization for the Full Identification of Bivariate Operator Fractional Brownian Motion , 2016, IEEE Transactions on Signal Processing.

[100]  R. Dahlhaus Efficient parameter estimation for self-similar processes , 1989, math/0607078.

[101]  Walter Willinger,et al.  Scaling phenomena in the Internet: Critically examining criticality , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[102]  Patrice Abry,et al.  Wavelet Analysis of Long-Range-Dependent Traffic , 1998, IEEE Trans. Inf. Theory.

[103]  Béatrice Vedel,et al.  Explicit constructions of operator scaling Gaussian fields , 2011 .

[104]  Walter Willinger,et al.  Self-similarity through high-variability: statistical analysis of Ethernet LAN traffic at the source level , 1997, TNET.

[105]  Mark M. Meerschaert,et al.  Operator scaling stable random fields , 2006 .

[106]  Katsumi Shimotsu,et al.  Gaussian semiparametric estimation of multivariate fractionally integrated processes , 2007 .

[107]  Sally Floyd,et al.  Wide-area traffic: the failure of Poisson modeling , 1994 .

[108]  P. M. Robinsonb,et al.  Semiparametric fractional cointegration analysis , 1999 .

[109]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[110]  Vladas Pipiras,et al.  Estimation of the self-similarity parameter in linear fractional stable motion , 2002, Signal Process..

[111]  G. Didier,et al.  Integral representations and properties of operator fractional Brownian motions , 2011, 1102.1822.

[112]  François Roueff,et al.  On the Spectral Density of the Wavelet Coefficients of Long‐Memory Time Series with Application to the Log‐Regression Estimation of the Memory Parameter , 2005, math/0512635.

[113]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .