Applications of integrative OMICs approaches to gene regulation studies

BackgroundFunctional genomics employs dozens of OMICs technologies to explore the functions of DNA, RNA and protein regulators in gene regulation processes. Despite each of these technologies being powerful tools on their own, like the parable of blind men and an elephant, any one single technology has a limited ability to depict the complex regulatory system. Integrative OMICS approaches have emerged and become an important area in biology and medicine. It provides a precise and effective way to study gene regulations.ResultsThis article reviews current popular OMICs technologies, OMICs data integration strategies, and bioinformatics tools used for multi-dimensional data integration. We highlight the advantages of these methods, particularly in elucidating molecular basis of biological regulatory mechanisms.ConclusionsTo better understand the complexity of biological processes, we need powerful bioinformatics tools to integrate these OMICs data. Integrating multi-dimensional OMICs data will generate novel insights into system-level gene regulations and serves as a foundation for further hypothesis-driven research.

[1]  Tanya Z. Berardini,et al.  The Arabidopsis Information Resource (TAIR): gene structure and function annotation , 2007, Nucleic Acids Res..

[2]  Bin Yan,et al.  The Current Status and Challenges in Computational Analysis of Genomic Big Data , 2015, Big Data Res..

[3]  Jacob F. Degner,et al.  Sequence and Chromatin Accessibility Data Accurate Inference of Transcription Factor Binding from Dna Material Supplemental Open Access , 2022 .

[4]  Gangning Liang,et al.  Genome-wide mapping of nucleosome positioning and DNA methylation within individual DNA molecules , 2012, Genome research.

[5]  Nathan C. Sheffield,et al.  Predicting cell-type–specific gene expression from regions of open chromatin , 2012, Genome research.

[6]  Yoshihide Hayashizaki,et al.  A predictive computational framework for direct reprogramming between human cell types , 2016, Nature Genetics.

[7]  Panayiotis V. Benos,et al.  mirConnX: condition-specific mRNA-microRNA network integrator , 2011, Nucleic Acids Res..

[8]  Alkes L. Price,et al.  Integrative approaches for large-scale transcriptome-wide association studies , 2015 .

[9]  Rachel B. Brem,et al.  Stitching together Multiple Data Dimensions Reveals Interacting Metabolomic and Transcriptomic Networks That Modulate Cell Regulation , 2012, PLoS biology.

[10]  C. McCall,et al.  MicroRNAs regulatory networks in myeloid lineage development and differentiation: regulators of the regulators , 2012, Immunology and cell biology.

[11]  J. Kjems,et al.  Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development , 2015, Genome Biology.

[12]  P. Boutros,et al.  Onco-proteogenomics: cancer proteomics joins forces with genomics , 2014, Nature Methods.

[13]  Howard Y. Chang,et al.  Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position , 2013, Nature Methods.

[14]  Michael Q. Zhang,et al.  Fast dimension reduction and integrative clustering of multi-omics data using low-rank approximation: application to cancer molecular classification , 2015, BMC Genomics.

[15]  Esther Lau Non-coding RNA: Zooming in on lncRNA functions , 2014, Nature Reviews Genetics.

[16]  Bin Yan,et al.  Exploring the function of genetic variants in the non-coding genomic regions: approaches for identifying human regulatory variants affecting gene expression , 2015, Briefings Bioinform..

[17]  John D. Storey,et al.  Capturing Heterogeneity in Gene Expression Studies by Surrogate Variable Analysis , 2007, PLoS genetics.

[18]  Michael J. Ziller,et al.  Transcription factor binding dynamics during human ESC differentiation , 2015, Nature.

[19]  Avi Ma'ayan,et al.  ESCAPE: database for integrating high-content published data collected from human and mouse embryonic stem cells , 2013, Database J. Biol. Databases Curation.

[20]  Beth Israel,et al.  Decision letter: Replication Study: A coding-independent function of gene and pseudogene mRNAs regulates tumour biology , 2010 .

[21]  Raymond K. Auerbach,et al.  Mapping accessible chromatin regions using Sono-Seq , 2009, Proceedings of the National Academy of Sciences.

[22]  Data production leads,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .

[23]  Andrew Emili,et al.  PRISM, a Generic Large Scale Proteomic Investigation Strategy for Mammals*S , 2003, Molecular & Cellular Proteomics.

[24]  R. Ozawa,et al.  A comprehensive two-hybrid analysis to explore the yeast protein interactome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Tamer Kahveci,et al.  Accessed Terms of Use , 2022 .

[26]  Ernest Fraenkel,et al.  ResponseNet: revealing signaling and regulatory networks linking genetic and transcriptomic screening data , 2011, Nucleic Acids Res..

[27]  Hongkai Ji,et al.  ChIPXpress: using publicly available gene expression data to improve ChIP-seq and ChIP-chip target gene ranking , 2013, BMC Bioinformatics.

[28]  Hongyang Wang,et al.  Systematic Analysis of Protein Phosphorylation Networks From Phosphoproteomic Data* , 2012, Molecular & Cellular Proteomics.

[29]  J. Zeitlinger,et al.  Polycomb complexes repress developmental regulators in murine embryonic stem cells , 2006, Nature.

[30]  Ling-Ling Chen The biogenesis and emerging roles of circular RNAs , 2016, Nature Reviews Molecular Cell Biology.

[31]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[32]  Charles Gawad,et al.  Circular RNAs Are the Predominant Transcript Isoform from Hundreds of Human Genes in Diverse Cell Types , 2012, PloS one.

[33]  Ming Zhan,et al.  Unraveling Regulatory Programs for NF-kappaB, p53 and MicroRNAs in Head and Neck Squamous Cell Carcinoma , 2013, PloS one.

[34]  Karsten Zengler,et al.  The challenges of integrating multi-omic data sets. , 2010, Nature chemical biology.

[35]  B. Williams,et al.  Mapping and quantifying mammalian transcriptomes by RNA-Seq , 2008, Nature Methods.

[36]  Henry Yang,et al.  Graded Nodal/Activin Signaling Titrates Conversion of Quantitative Phospho-Smad2 Levels into Qualitative Embryonic Stem Cell Fate Decisions , 2011, PLoS genetics.

[37]  P. Park ChIP–seq: advantages and challenges of a maturing technology , 2009, Nature Reviews Genetics.

[38]  Peter A. Jones,et al.  OCT4 establishes and maintains nucleosome-depleted regions that provide additional layers of epigenetic regulation of its target genes , 2011, Proceedings of the National Academy of Sciences.

[39]  J. Marchini,et al.  Genotype imputation for genome-wide association studies , 2010, Nature Reviews Genetics.

[40]  Rudolf Jaenisch,et al.  Mechanisms and models of somatic cell reprogramming , 2013, Nature Reviews Genetics.

[41]  David A. Orlando,et al.  Quantitative ChIP-Seq normalization reveals global modulation of the epigenome. , 2014, Cell reports.

[42]  Paul C. Leyland,et al.  FlyBase: improvements to the bibliography , 2012, Nucleic Acids Res..

[43]  J. Kjems,et al.  Natural RNA circles function as efficient microRNA sponges , 2013, Nature.

[44]  Jie Zhou,et al.  Discovering transcription factor regulatory targets using gene expression and binding data , 2012, Bioinform..

[45]  F. Zhao,et al.  CIRI: an efficient and unbiased algorithm for de novo circular RNA identification , 2015, Genome Biology.

[46]  Edith D. Wong,et al.  Saccharomyces genome database provides new regulation data , 2013, Nucleic Acids Res..

[47]  A. Mele,et al.  Ago HITS-CLIP decodes miRNA-mRNA interaction maps , 2009, Nature.

[48]  Qi Liu,et al.  iPEAP: integrating multiple omics and genetic data for pathway enrichment analysis , 2014, Bioinform..

[49]  Jie Tan,et al.  Cross-platform normalization of microarray and RNA-seq data for machine learning applications , 2016, PeerJ.

[50]  Robert L. Grossman,et al.  A cis-regulatory map of the Drosophila genome , 2011, Nature.

[51]  Jennifer M. Bolin,et al.  Proteomic and phosphoproteomic comparison of human ES and iPS cells , 2011, Nature Methods.

[52]  I. Sancho-Martinez,et al.  Lineage conversion methodologies meet the reprogramming toolbox , 2012, Nature Cell Biology.

[53]  S. Fields,et al.  A novel genetic system to detect protein–protein interactions , 1989, Nature.

[54]  Michael Q. Zhang,et al.  ChIP-Array: combinatory analysis of ChIP-seq/chip and microarray gene expression data to discover direct/indirect targets of a transcription factor , 2011, Nucleic Acids Res..

[55]  Leighton J. Core,et al.  Nascent RNA Sequencing Reveals Widespread Pausing and Divergent Initiation at Human Promoters , 2008, Science.

[56]  D. Tollervey,et al.  Mapping the Human miRNA Interactome by CLASH Reveals Frequent Noncanonical Binding , 2013, Cell.

[57]  Hanfei Sun,et al.  Target analysis by integration of transcriptome and ChIP-seq data with BETA , 2013, Nature Protocols.

[58]  Jin Billy Li,et al.  Accurate identification of human Alu and non-Alu RNA editing sites , 2012, Nature Methods.

[59]  L. Mirny,et al.  Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data , 2013, Nature Reviews Genetics.

[60]  A. Fernie,et al.  Unraveling retrograde signaling pathways: finding candidate signaling molecules via metabolomics and systems biology driven approaches , 2012, Front. Plant Sci..

[61]  Hong Zhou,et al.  mirAct: a web tool for evaluating microRNA activity based on gene expression data , 2011, Nucleic Acids Res..

[62]  Mudit Gupta,et al.  Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. , 2011, Cell stem cell.

[63]  Diogo M. Camacho,et al.  Wisdom of crowds for robust gene network inference , 2012, Nature Methods.

[64]  Dustin E. Schones,et al.  Dynamic Regulation of Nucleosome Positioning in the Human Genome , 2008, Cell.

[65]  Nancy F. Hansen,et al.  Accurate Whole Human Genome Sequencing using Reversible Terminator Chemistry , 2008, Nature.

[66]  Michael Q. Zhang,et al.  De novo deciphering three-dimensional chromatin interaction and topological domains by wavelet transformation of epigenetic profiles , 2016, Nucleic acids research.

[67]  M. Ares,et al.  Context-dependent control of alternative splicing by RNA-binding proteins , 2014, Nature Reviews Genetics.

[68]  Anne H. O'Donnell,et al.  Chromatin and sequence features that define the fine and gross structure of genomic methylation patterns. , 2010, Genome research.

[69]  J. Rinn,et al.  Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression , 2009, Proceedings of the National Academy of Sciences.

[70]  Jiong Yang,et al.  PathFinder: mining signal transduction pathway segments from protein-protein interaction networks , 2007, BMC Bioinformatics.

[71]  Jin Billy Li,et al.  Edinburgh Research Explorer Identifying Rna Editing Sites Using Rna Sequencing Data Alone , 2022 .

[72]  Neff Walker,et al.  A MicroRNA as a Translational Repressor of APETALA2 in Arabidopsis Flower Development , 2004 .

[73]  V. Mootha,et al.  Metabolite Profiling Identifies a Key Role for Glycine in Rapid Cancer Cell Proliferation , 2012, Science.

[74]  Jun Qin,et al.  Nanog and Oct4 associate with unique transcriptional repression complexes in embryonic stem cells , 2008, Nature Cell Biology.

[75]  Emery H. Bresnick,et al.  Integration of Hi-C and ChIP-seq data reveals distinct types of chromatin linkages , 2012, Nucleic acids research.

[76]  Juan Liu,et al.  A novel computational framework for simultaneous integration of multiple types of genomic data to identify microRNA-gene regulatory modules , 2011, Bioinform..

[77]  Kenta Nakai,et al.  DBTSS as an integrative platform for transcriptome, epigenome and genome sequence variation data , 2014, Nucleic Acids Res..

[78]  Li Yang,et al.  Genomewide characterization of non-polyadenylated RNAs , 2011, Genome Biology.

[79]  Adam A. Margolin,et al.  Assessing the clinical utility of cancer genomic and proteomic data across tumor types , 2014, Nature Biotechnology.

[80]  Chen-Hsiang Yeang,et al.  An integrative characterization of recurrent molecular aberrations in glioblastoma genomes , 2013, Nucleic acids research.

[81]  Gos Micklem,et al.  Supporting Online Material Materials and Methods Figs. S1 to S50 Tables S1 to S18 References Identification of Functional Elements and Regulatory Circuits by Drosophila Modencode , 2022 .

[82]  K. Pollard,et al.  Enhancer–promoter interactions are encoded by complex genomic signatures on looping chromatin , 2016, Nature Genetics.

[83]  Martin Renqiang Min,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .

[84]  Sarah Geisler,et al.  RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts , 2013, Nature Reviews Molecular Cell Biology.

[85]  Howard Y. Chang,et al.  Revealing long noncoding RNA architecture and functions using domain-specific chromatin isolation by RNA purification , 2014, Nature Biotechnology.

[86]  G. Ruvkun,et al.  Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans , 1993, Cell.

[87]  J. Qian,et al.  Construction of human activity-based phosphorylation networks , 2013, Molecular systems biology.

[88]  J. Steitz,et al.  Switching from Repression to Activation: MicroRNAs Can Up-Regulate Translation , 2007, Science.

[89]  Manolis Kellis,et al.  Large-scale epigenome imputation improves data quality and disease variant enrichment , 2015, Nature Biotechnology.

[90]  Pak Chung Sham,et al.  GWASdb: a database for human genetic variants identified by genome-wide association studies , 2011, Nucleic Acids Res..

[91]  Samantha A. Morris,et al.  CellNet: Network Biology Applied to Stem Cell Engineering , 2014, Cell.

[92]  A. Frigessi,et al.  Principles and methods of integrative genomic analyses in cancer , 2014, Nature Reviews Cancer.

[93]  M. Ritchie,et al.  Methods of integrating data to uncover genotype–phenotype interactions , 2015, Nature Reviews Genetics.

[94]  Mariano J. Alvarez,et al.  Genome-wide Identification of Post-translational Modulators of Transcription Factor Activity in Human B-Cells , 2009, Nature Biotechnology.

[95]  Shi-Hua Zhang,et al.  Identifying multi-layer gene regulatory modules from multi-dimensional genomic data , 2012, Bioinform..

[96]  Sharon Y. R. Dent,et al.  Chromatin modifiers and remodellers: regulators of cellular differentiation , 2013, Nature Reviews Genetics.

[97]  Abhishek K. Jha,et al.  Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. , 2015, Immunity.

[98]  Emily H Turner,et al.  Targeted Capture and Massively Parallel Sequencing of Twelve Human Exomes , 2009, Nature.

[99]  Matej Oresic,et al.  Normalization method for metabolomics data using optimal selection of multiple internal standards , 2007, BMC Bioinformatics.

[100]  David S. Wishart,et al.  SMPDB 2.0: Big Improvements to the Small Molecule Pathway Database , 2013, Nucleic Acids Res..

[101]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[102]  Steven J. M. Jones,et al.  Integrated genomic characterization of endometrial carcinoma , 2013, Nature.

[103]  M. Gerstein,et al.  RNA-Seq: a revolutionary tool for transcriptomics , 2009, Nature Reviews Genetics.

[104]  Nathan C. Sheffield,et al.  Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity. , 2011, Genome research.

[105]  Patrick G. A. Pedrioli,et al.  Phosphoproteomic Analysis Reveals Interconnected System-Wide Responses to Perturbations of Kinases and Phosphatases in Yeast , 2010, Science Signaling.

[106]  S. Yamanaka,et al.  Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors , 2006, Cell.

[107]  Ke Deng,et al.  High-dimensional genomic data bias correction and data integration using MANCIE , 2016, Nature Communications.

[108]  Robert Gentleman,et al.  An integrative genomic approach identifies p73 and p63 as activators of miR-200 microRNA family transcription , 2011, Nucleic acids research.

[109]  Gabriele Sales,et al.  MAGIA, a web-based tool for miRNA and Genes Integrated Analysis , 2010, Nucleic Acids Res..

[110]  Bin Yan,et al.  CMGRN: a web server for constructing multilevel gene regulatory networks using ChIP-seq and gene expression data , 2014, Bioinform..

[111]  Jernej Ule,et al.  Understanding splicing regulation through RNA splicing maps , 2011, Trends in genetics : TIG.

[112]  Wei Wang,et al.  Predicting enhancer transcription and activity from chromatin modifications , 2013, Nucleic acids research.

[113]  Esti Yeger Lotem,et al.  ResponseNet2.0: revealing signaling and regulatory pathways connecting your proteins and genes—now with human data , 2013, Nucleic Acids Res..

[114]  S. Ficarro,et al.  Genome-scale Proteome Quantification by DEEP SEQ Mass Spectrometry , 2013, Nature Communications.

[115]  Faramarz Valafar,et al.  Empirical comparison of cross-platform normalization methods for gene expression data , 2011, BMC Bioinformatics.

[116]  John G Doench,et al.  Specificity of microRNA target selection in translational repression. , 2004, Genes & development.

[117]  P. Laird,et al.  Discovery of multi-dimensional modules by integrative analysis of cancer genomic data , 2012, Nucleic acids research.

[118]  Madeleine P. Ball,et al.  Corrigendum: Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells , 2009, Nature Biotechnology.

[119]  Michael Q. Zhang,et al.  Combinatorial patterns of histone acetylations and methylations in the human genome , 2008, Nature Genetics.

[120]  Karen L. Mohlke,et al.  A map of open chromatin in human pancreatic islets , 2010, Nature Genetics.

[121]  W. Kuo,et al.  High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays , 1998, Nature Genetics.

[122]  Alexander van Oudenaarden,et al.  Highly expressed loci are vulnerable to misleading ChIP localization of multiple unrelated proteins , 2013, Proceedings of the National Academy of Sciences.

[123]  Michael B. Stadler,et al.  Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. , 2008, Molecular cell.

[124]  Jun S. Song,et al.  Statistical Applications in Genetics and Molecular Biology Normalization , bias correction , and peak calling for ChIP-seq , 2012 .

[125]  Shane J. Neph,et al.  An expansive human regulatory lexicon encoded in transcription factor footprints , 2012, Nature.

[126]  M. Mann,et al.  SILAC Mouse for Quantitative Proteomics Uncovers Kindlin-3 as an Essential Factor for Red Blood Cell Function , 2008, Cell.

[127]  Binhua Tang,et al.  Hierarchical Modularity in ERα Transcriptional Network Is Associated with Distinct Functions and Implicates Clinical Outcomes , 2012, Scientific Reports.

[128]  B. Frey,et al.  Using expression profiling data to identify human microRNA targets , 2007, Nature Methods.

[129]  Megan F. Cole,et al.  Core Transcriptional Regulatory Circuitry in Human Embryonic Stem Cells , 2005, Cell.

[130]  K. Hochedlinger,et al.  Harnessing the potential of induced pluripotent stem cells for regenerative medicine. , 2011, Nature cell biology.

[131]  Sumio Sugano,et al.  Temporal Perturbation of Tyrosine Phosphoproteome Dynamics Reveals the System-wide Regulatory Networks *S , 2009, Molecular & Cellular Proteomics.

[132]  Benjamin J. Raphael,et al.  Integrated Genomic Analyses of Ovarian Carcinoma , 2011, Nature.

[133]  Patrick J. Killion,et al.  Genetic reconstruction of a functional transcriptional regulatory network , 2007, Nature Genetics.

[134]  Fan Zhu,et al.  Predicting dynamic signaling network response under unseen perturbations , 2014, Bioinform..

[135]  Julia A. Lasserre,et al.  Histone modification levels are predictive for gene expression , 2010, Proceedings of the National Academy of Sciences.

[136]  A. Urban,et al.  MEDME: an experimental and analytical methodology for the estimation of DNA methylation levels based on microarray derived MeDIP-enrichment. , 2008, Genome research.

[137]  Madeleine P. Ball,et al.  Targeted and genome-scale methylomics reveals gene body signatures in human cell lines , 2009, Nature Biotechnology.

[138]  Raymond K. Auerbach,et al.  modENCODE Project Genome by the Caenorhabditis elegans Integrative Analysis of the , 2011 .

[139]  M. Gerstein,et al.  Relationship between gene co-expression and probe localization on microarray slides , 2003, BMC Genomics.

[140]  Eric A. Ortlund,et al.  The structure, function and evolution of proteins that bind DNA and RNA , 2014, Nature Reviews Molecular Cell Biology.

[141]  Shi-Hua Zhang,et al.  Integrative analysis for identifying joint modular patterns of gene-expression and drug-response data , 2016, Bioinform..

[142]  Matthew A. Hibbs,et al.  Discovery of biological networks from diverse functional genomic data , 2005, Genome Biology.

[143]  Pak Chung Sham,et al.  Genetic variant representation, annotation and prioritization in the post-GWAS era , 2012, Cell Research.

[144]  L. Xiangjun,et al.  ? Higher Education Press and Springer-Verlag 2007 , 2007 .

[145]  K. Robasky,et al.  The role of replicates for error mitigation in next-generation sequencing , 2013, Nature Reviews Genetics.

[146]  Michael Q. Zhang,et al.  Integrative analysis of 111 reference human epigenomes , 2015, Nature.

[147]  Roded Sharan,et al.  SPINE: a framework for signaling-regulatory pathway inference from cause-effect experiments , 2007, ISMB/ECCB.

[148]  T. Mikkelsen,et al.  Genome-scale DNA methylation maps of pluripotent and differentiated cells , 2008, Nature.

[149]  Megan F. Cole,et al.  Connecting microRNA Genes to the Core Transcriptional Regulatory Circuitry of Embryonic Stem Cells , 2008, Cell.

[150]  Junwen Wang,et al.  Inferring gene regulatory networks by integrating ChIP-seq/chip and transcriptome data via LASSO-type regularization methods. , 2014, Methods.

[151]  B. Pugh,et al.  ChIP‐exo Method for Identifying Genomic Location of DNA‐Binding Proteins with Near‐Single‐Nucleotide Accuracy , 2012, Current protocols in molecular biology.

[152]  Hui Zhou,et al.  starBase: a database for exploring microRNA–mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data , 2010, Nucleic Acids Res..

[153]  Pu Zhang,et al.  DNMT1-interacting RNAs block gene specific DNA methylation , 2013, Nature.

[154]  Bin Yan,et al.  PTHGRN: unraveling post-translational hierarchical gene regulatory networks using PPI, ChIP-seq and gene expression data , 2014, Nucleic Acids Res..

[155]  A. Gnirke,et al.  Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis , 2005, Nucleic acids research.

[156]  Y. Zhang,et al.  In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features , 2013, Nature.

[157]  Michael J. Ziller,et al.  Transcriptional and Epigenetic Dynamics during Specification of Human Embryonic Stem Cells , 2013, Cell.

[158]  J. Steitz,et al.  AU-Rich-Element-Mediated Upregulation of Translation by FXR1 and Argonaute 2 , 2007, Cell.

[159]  Nicholas T. Ingolia,et al.  Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling , 2009, Science.

[160]  Ilya Shmulevich,et al.  Gene pair signatures in cell type transcriptomes reveal lineage control , 2013, Nature Methods.

[161]  S. Luo,et al.  Global identification of microRNA–target RNA pairs by parallel analysis of RNA ends , 2008, Nature Biotechnology.

[162]  Curtis Balch,et al.  MicroRNA and mRNA integrated analysis (MMIA): a web tool for examining biological functions of microRNA expression , 2009, Nucleic Acids Res..

[163]  B. Snel,et al.  Comparative assessment of large-scale data sets of protein–protein interactions , 2002, Nature.

[164]  Cheng Li,et al.  Adjusting batch effects in microarray expression data using empirical Bayes methods. , 2007, Biostatistics.

[165]  Lee E. Edsall,et al.  Human DNA methylomes at base resolution show widespread epigenomic differences , 2009, Nature.

[166]  Michael Q. Zhang,et al.  3CPET: finding co-factor complexes from ChIA-PET data using a hierarchical Dirichlet process , 2015, Genome Biology.

[167]  Michael Q. Zhang,et al.  EpiRegNet: Constructing epigenetic regulatory network from high throughput gene expression data for humans , 2011, Epigenetics.

[168]  Steven J. M. Jones,et al.  Comprehensive molecular characterization of gastric adenocarcinoma , 2014, Nature.

[169]  P. Bork,et al.  Functional organization of the yeast proteome by systematic analysis of protein complexes , 2002, Nature.

[170]  S. Moreno,et al.  Multiple functions of the noncanonical Wnt pathway. , 2013, Trends in genetics : TIG.

[171]  Michael Q. Zhang,et al.  ProteoMirExpress: Inferring MicroRNA and Protein-centered Regulatory Networks from High-throughput Proteomic and mRNA Expression Data* , 2013, Molecular & Cellular Proteomics.

[172]  Zhuowen Tu,et al.  Similarity network fusion for aggregating data types on a genomic scale , 2014, Nature Methods.

[173]  Lukas Burger,et al.  Enhancer repertoires are reshaped independently of early priming and heterochromatin dynamics during B cell differentiation , 2015, Nature Communications.