A domain decomposition method for solving the three-dimensional time-harmonic Maxwell equations discretized by discontinuous Galerkin methods
暂无分享,去创建一个
[1] Marc Duruflé,et al. Intégration numérique et éléments finis d'ordre élevé appliqués aux équations de Maxwell en régime harmonique. (Numerical integration and high order finite element methods applied to time-harmonic Maxwell equations) , 2006 .
[2] Ronan Perrussel,et al. Solution of the time-harmonic Maxwell equations using discontinuous Galerkin methods , 2006, math/0610508.
[3] D. R. Fokkema,et al. BiCGstab(ell) for Linear Equations involving Unsymmetric Matrices with Complex Spectrum , 1993 .
[4] Jack J. Dongarra,et al. Implementation of mixed precision in solving systems of linear equations on the Cell processor , 2007, Concurr. Comput. Pract. Exp..
[5] Michele Benzi,et al. Preconditioning Highly Indefinite and Nonsymmetric Matrices , 2000, SIAM J. Sci. Comput..
[6] Pascal Hénon,et al. PaStiX: a high-performance parallel direct solver for sparse symmetric positive definite systems , 2002, Parallel Comput..
[7] Jean-Luc Guermond,et al. Discontinuous Galerkin Methods for Friedrichs’ Systems , 2006 .
[8] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[9] Philippe Helluy. Résolution numérique des équations de Maxwell harmoniques par une méthode d'éléments finis discontinus , 1994 .
[10] L. Fezoui,et al. Convergence and stability of a discontinuous galerkin time-domain method for the 3D heterogeneous maxwell equations on unstructured meshes , 2005 .
[11] Steve Oudot,et al. Provably good sampling and meshing of surfaces , 2005, Graph. Model..
[12] Ilaria Perugia,et al. Discontinuous Galerkin Approximation of the Maxwell Eigenproblem , 2006, SIAM J. Numer. Anal..
[13] Philippe Helluy,et al. Resolution of the non-stationary or harmonic Maxwell equations by a discontinuous finite element method: Application to an E.M.I. (electromagnetic impulse) case , 1991 .
[14] J. Hesthaven,et al. Nodal high-order methods on unstructured grids , 2002 .
[15] F. Rapetti,et al. A hp-like discontinuous Galerkin method for solving the 2D time-domain Maxwell's equations on non-conforming locally refined triangular meshes , 2007 .
[16] J. Dongarra,et al. Exploiting the Performance of 32 bit Floating Point Arithmetic in Obtaining 64 bit Accuracy (Revisiting Iterative Refinement for Linear Systems) , 2006, ACM/IEEE SC 2006 Conference (SC'06).
[17] Ilaria Perugia,et al. Interior penalty method for the indefinite time-harmonic Maxwell equations , 2005, Numerische Mathematik.
[18] D. Schötzau,et al. Stabilized interior penalty methods for the time-harmonic Maxwell equations , 2002 .
[19] James D. Westwood. Medicine meets virtual reality 11 : NextMed : health horizon , 2003 .
[20] S. Pisa,et al. Specific absorption rate and temperature increases in the head of a cellular-phone user , 2000 .
[21] P. George,et al. Automatic mesh generator with specified boundary , 1991 .
[22] Luca Gerardo-Giorda,et al. New Nonoverlapping Domain Decomposition Methods for the Harmonic Maxwell System , 2006, SIAM J. Sci. Comput..
[23] L. Paul Chew,et al. Guaranteed-quality mesh generation for curved surfaces , 1993, SCG '93.
[24] Z. Cendes,et al. A FEM domain decomposition method for photonic and electromagnetic band gap structures , 2006, IEEE Transactions on Antennas and Propagation.
[25] Patrick Joly,et al. A new interface condition in the non-overlapping domain decomposition method for the Maxwell equations , 1997 .
[26] Pascal Frey,et al. YAMS A fully Automatic Adaptive Isotropic Surface Remeshing Procedure , 2001 .
[27] Philippe Helluy,et al. Convergence d'une approximation discontinue des systèmes du premier ordre , 1994 .
[28] Martin J. Gander,et al. Optimized Schwarz Methods for Maxwell's Equations , 2006, SIAM J. Sci. Comput..
[29] Martin J. Gander,et al. Optimized Schwarz Methods without Overlap for the Helmholtz Equation , 2002, SIAM J. Sci. Comput..
[30] William E. Lorensen,et al. Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.
[31] Patrick R. Amestoy,et al. Multifrontal parallel distributed symmetric and unsymmetric solvers , 2000 .
[32] Jean-Luc Guermond,et al. Discontinuous Galerkin Methods for Friedrichs' Systems. I. General theory , 2006, SIAM J. Numer. Anal..
[33] Jin-Fa Lee,et al. A non-overlapping domain decomposition method with non-matching grids for modeling large finite antenna arrays , 2005 .
[34] Bernardo Cockburn. Discontinuous Galerkin methods , 2003 .
[35] Vipin Kumar,et al. A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..
[36] D. Schötzau,et al. Mixed discontinuous Galerkin approximation of the Maxwell operator: The indefinite case , 2005 .
[37] B. Després,et al. Décomposition de domaine et problème de Helmholtz , 1990 .
[38] Jean-Luc Guermond,et al. Discontinuous Galerkin Methods for Friedrichs' Systems. Part II. Second-order Elliptic PDEs , 2006, SIAM J. Numer. Anal..
[39] Jack R Glaser,et al. Visible Human 2.0--the next generation. , 2003, Studies in health technology and informatics.
[40] Serge Piperno,et al. L 2 -STABILITY OF THE UPWIND FIRST ORDER FINITE VOLUME SCHEME FOR THE MAXWELL EQUATIONS IN TWO AND THREE DIMENSIONS ON ARBITRARY UNSTRUCTURED MESHES , 2000 .