A domain decomposition method for solving the three-dimensional time-harmonic Maxwell equations discretized by discontinuous Galerkin methods

We present here a domain decomposition method for solving the three-dimensional time-harmonic Maxwell equations discretized by a discontinuous Galerkin method. In order to allow the treatment of irregularly shaped geometries, the discontinuous Galerkin method is formulated on unstructured tetrahedral meshes. The domain decomposition strategy takes the form of a Schwarz-type algorithm where a continuity condition on the incoming characteristic variables is imposed at the interfaces between neighboring subdomains. A multifrontal sparse direct solver is used at the subdomain level. The resulting domain decomposition strategy can be viewed as a hybrid iterative/direct solution method for the large, sparse and complex coefficients algebraic system resulting from the discretization of the time-harmonic Maxwell equations by a discontinuous Galerkin method.

[1]  Marc Duruflé,et al.  Intégration numérique et éléments finis d'ordre élevé appliqués aux équations de Maxwell en régime harmonique. (Numerical integration and high order finite element methods applied to time-harmonic Maxwell equations) , 2006 .

[2]  Ronan Perrussel,et al.  Solution of the time-harmonic Maxwell equations using discontinuous Galerkin methods , 2006, math/0610508.

[3]  D. R. Fokkema,et al.  BiCGstab(ell) for Linear Equations involving Unsymmetric Matrices with Complex Spectrum , 1993 .

[4]  Jack J. Dongarra,et al.  Implementation of mixed precision in solving systems of linear equations on the Cell processor , 2007, Concurr. Comput. Pract. Exp..

[5]  Michele Benzi,et al.  Preconditioning Highly Indefinite and Nonsymmetric Matrices , 2000, SIAM J. Sci. Comput..

[6]  Pascal Hénon,et al.  PaStiX: a high-performance parallel direct solver for sparse symmetric positive definite systems , 2002, Parallel Comput..

[7]  Jean-Luc Guermond,et al.  Discontinuous Galerkin Methods for Friedrichs’ Systems , 2006 .

[8]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[9]  Philippe Helluy Résolution numérique des équations de Maxwell harmoniques par une méthode d'éléments finis discontinus , 1994 .

[10]  L. Fezoui,et al.  Convergence and stability of a discontinuous galerkin time-domain method for the 3D heterogeneous maxwell equations on unstructured meshes , 2005 .

[11]  Steve Oudot,et al.  Provably good sampling and meshing of surfaces , 2005, Graph. Model..

[12]  Ilaria Perugia,et al.  Discontinuous Galerkin Approximation of the Maxwell Eigenproblem , 2006, SIAM J. Numer. Anal..

[13]  Philippe Helluy,et al.  Resolution of the non-stationary or harmonic Maxwell equations by a discontinuous finite element method: Application to an E.M.I. (electromagnetic impulse) case , 1991 .

[14]  J. Hesthaven,et al.  Nodal high-order methods on unstructured grids , 2002 .

[15]  F. Rapetti,et al.  A hp-like discontinuous Galerkin method for solving the 2D time-domain Maxwell's equations on non-conforming locally refined triangular meshes , 2007 .

[16]  J. Dongarra,et al.  Exploiting the Performance of 32 bit Floating Point Arithmetic in Obtaining 64 bit Accuracy (Revisiting Iterative Refinement for Linear Systems) , 2006, ACM/IEEE SC 2006 Conference (SC'06).

[17]  Ilaria Perugia,et al.  Interior penalty method for the indefinite time-harmonic Maxwell equations , 2005, Numerische Mathematik.

[18]  D. Schötzau,et al.  Stabilized interior penalty methods for the time-harmonic Maxwell equations , 2002 .

[19]  James D. Westwood Medicine meets virtual reality 11 : NextMed : health horizon , 2003 .

[20]  S. Pisa,et al.  Specific absorption rate and temperature increases in the head of a cellular-phone user , 2000 .

[21]  P. George,et al.  Automatic mesh generator with specified boundary , 1991 .

[22]  Luca Gerardo-Giorda,et al.  New Nonoverlapping Domain Decomposition Methods for the Harmonic Maxwell System , 2006, SIAM J. Sci. Comput..

[23]  L. Paul Chew,et al.  Guaranteed-quality mesh generation for curved surfaces , 1993, SCG '93.

[24]  Z. Cendes,et al.  A FEM domain decomposition method for photonic and electromagnetic band gap structures , 2006, IEEE Transactions on Antennas and Propagation.

[25]  Patrick Joly,et al.  A new interface condition in the non-overlapping domain decomposition method for the Maxwell equations , 1997 .

[26]  Pascal Frey,et al.  YAMS A fully Automatic Adaptive Isotropic Surface Remeshing Procedure , 2001 .

[27]  Philippe Helluy,et al.  Convergence d'une approximation discontinue des systèmes du premier ordre , 1994 .

[28]  Martin J. Gander,et al.  Optimized Schwarz Methods for Maxwell's Equations , 2006, SIAM J. Sci. Comput..

[29]  Martin J. Gander,et al.  Optimized Schwarz Methods without Overlap for the Helmholtz Equation , 2002, SIAM J. Sci. Comput..

[30]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[31]  Patrick R. Amestoy,et al.  Multifrontal parallel distributed symmetric and unsymmetric solvers , 2000 .

[32]  Jean-Luc Guermond,et al.  Discontinuous Galerkin Methods for Friedrichs' Systems. I. General theory , 2006, SIAM J. Numer. Anal..

[33]  Jin-Fa Lee,et al.  A non-overlapping domain decomposition method with non-matching grids for modeling large finite antenna arrays , 2005 .

[34]  Bernardo Cockburn Discontinuous Galerkin methods , 2003 .

[35]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[36]  D. Schötzau,et al.  Mixed discontinuous Galerkin approximation of the Maxwell operator: The indefinite case , 2005 .

[37]  B. Després,et al.  Décomposition de domaine et problème de Helmholtz , 1990 .

[38]  Jean-Luc Guermond,et al.  Discontinuous Galerkin Methods for Friedrichs' Systems. Part II. Second-order Elliptic PDEs , 2006, SIAM J. Numer. Anal..

[39]  Jack R Glaser,et al.  Visible Human 2.0--the next generation. , 2003, Studies in health technology and informatics.

[40]  Serge Piperno,et al.  L 2 -STABILITY OF THE UPWIND FIRST ORDER FINITE VOLUME SCHEME FOR THE MAXWELL EQUATIONS IN TWO AND THREE DIMENSIONS ON ARBITRARY UNSTRUCTURED MESHES , 2000 .