Langevin Dynamics with Space-Time Periodic Nonequilibrium Forcing

We present results on the ballistic and diffusive behavior of the Langevin dynamics in a periodic potential that is driven away from equilibrium by a space-time periodic driving force, extending some of the results obtained by Collet and Martinez in (J Math Biol, 56(6):765–792 2008). In the hyperbolic scaling, a nontrivial average velocity can be observed even if the external forcing vanishes in average. More surprisingly, an average velocity in the direction opposite to the forcing may develop at the linear response level—a phenomenon called negative mobility. The diffusive limit of the non-equilibrium Langevin dynamics is also studied using the general methodology of central limit theorems for additive functionals of Markov processes. To apply this methodology, which is based on the study of appropriate Poisson equations, we extend recent results on pointwise estimates of the resolvent of the generator associated with the Langevin dynamics. Our theoretical results are illustrated by numerical simulations of a two-dimensional system.

[1]  G. A. Pavliotis,et al.  Asymptotic analysis of the Green–Kubo formula , 2010, 1002.4103.

[2]  Gabriel Stoltz,et al.  Nonequilibrium Shear Viscosity Computations with Langevin Dynamics , 2011, Multiscale Model. Simul..

[3]  Djalil CHAFAÏ,et al.  Central limit theorems for additive functionals of ergodic Markov diffusions processes , 2011, 1104.2198.

[4]  Luc Rey-Bellet,et al.  Ergodic properties of Markov processes , 2006 .

[5]  P. Rousseeuw,et al.  Wiley Series in Probability and Mathematical Statistics , 2005 .

[6]  M. Kopec Weak backward error analysis for Langevin process , 2013, 1310.2599.

[7]  P. Hänggi,et al.  Absolute negative mobility induced by thermal equilibrium fluctuations. , 2006, Physical review letters.

[8]  E. Nummelin General irreducible Markov chains and non-negative operators: List of symbols and notation , 1984 .

[9]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[10]  G. A. Pavliotis,et al.  Diffusive Transport in Periodic Potentials: Underdamped Dynamics , 2008, 0805.0112.

[11]  F. Hérau,et al.  Isotropic Hypoellipticity and Trend to Equilibrium for the Fokker-Planck Equation with a High-Degree Potential , 2004 .

[12]  R. Bass,et al.  Review: P. Billingsley, Convergence of probability measures , 1971 .

[13]  Jonathan C. Mattingly,et al.  Yet Another Look at Harris’ Ergodic Theorem for Markov Chains , 2008, 0810.2777.

[14]  Y. Kutoyants,et al.  Estimating discontinuous periodic signals in a time inhomogeneous diffusion , 2009, 0903.5061.

[15]  S. Varadhan,et al.  Ohrnstein—uhlenbeck process in a random potential , 1985 .

[16]  Jean-Paul Chilès,et al.  Wiley Series in Probability and Statistics , 2012 .

[17]  Tomasz Komorowski,et al.  Fluctuations in Markov Processes , 2012 .

[18]  P. Imkeller,et al.  The exit problem for diffusions with time-periodic drift and stochastic resonance , 2005, math/0503455.

[19]  Josselin Garnier,et al.  Homogenization in a Periodic and Time-Dependent Potential , 1997, SIAM J. Appl. Math..

[20]  D. Talay Stochastic Hamiltonian Systems : Exponential Convergence to the Invariant Measure , and Discretization by the Implicit Euler Scheme , 2002 .

[21]  T. Komorowski,et al.  On the Superdiffusive Behavior of Passive Tracer with a Gaussian Drift , 2002 .

[22]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[23]  P. Spreij Probability and Measure , 1996 .

[24]  M. Manhart,et al.  Markov Processes , 2018, Introduction to Stochastic Processes and Simulation.

[25]  M. Hairer,et al.  Spectral Properties of Hypoelliptic Operators , 2002 .

[26]  Periodic Homogenization for Hypoelliptic Diffusions , 2004, math-ph/0403003.

[27]  S. Attal,et al.  Open Quantum Systems II , 2006 .

[28]  S. Varadhan,et al.  Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions , 1986 .

[29]  T. Komorowski,et al.  On Mobility and Einstein Relation for Tracers in Time-Mixing Random Environments , 2005 .

[30]  Joel L. Lebowitz,et al.  The Einstein relation for the displacement of a test particle in a random environment , 1994 .

[31]  Martin Hairer,et al.  From Ballistic to Diffusive Behavior in Periodic Potentials , 2007, 0707.2352.

[32]  P. Reimann Brownian motors: noisy transport far from equilibrium , 2000, cond-mat/0010237.

[33]  Gregoire Nicolis,et al.  Stochastic resonance , 2007, Scholarpedia.

[34]  Pierre Resibois,et al.  Classical kinetic theory of fluids , 1977 .

[35]  Francesco Russo,et al.  Seminar on stochastic analysis, random fields and applications IV , 1995 .

[36]  Inge S. Helland,et al.  Central Limit Theorems for Martingales with Discrete or Continuous Time , 1982 .

[37]  Luc Rey Bellet Ergodic Properties of Markov Processes , 2006 .

[38]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[39]  Jonathan C. Mattingly,et al.  Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise , 2002 .

[40]  J M Rubi,et al.  Giant acceleration of free diffusion by use of tilted periodic potentials. , 2001, Physical review letters.

[41]  P. Ferrari,et al.  An invariance principle for reversible Markov processes. Applications to random motions in random environments , 1989 .

[42]  G. Pavliotis A multiscale approach to Brownian motors , 2005, cond-mat/0504403.

[43]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[44]  G. A. Pavliotis,et al.  Corrections to Einstein’s Relation for Brownian Motion in a Tilted Periodic Potential , 2013 .

[45]  E. Nummelin General irreducible Markov chains and non-negative operators: Positive and null recurrence , 1984 .

[46]  Hermann Rodenhausen,et al.  Einstein's relation between diffusion constant and mobility for a diffusion model , 1989 .

[47]  M. Toda,et al.  In: Statistical physics II , 1985 .

[48]  B. Leimkuhler,et al.  The computation of averages from equilibrium and nonequilibrium Langevin molecular dynamics , 2013, 1308.5814.