Full anterior segment biometry with extended imaging range spectral domain optical coherence tomography at 1340 nm

Abstract. We demonstrate an extended-imaging-range anterior-segment optical coherence tomography (eAS-OCT) system for the biometric assessment of full AS in human eye. This newly developed eAS-OCT operating at 1340-nm wavelength band is simultaneously capable of an imaging speed of 120 kHz A-line scan rate, an axial resolution of 7.2 μm, and an extended imaging range of up to 16 mm in air. Imaging results from three healthy subjects and one subject with a narrow-angle demonstrate the instrument’s utility. With this system, it can provide anatomical dimensions of AS, including central corneal thickness, anterior chamber width, anterior chamber depth, crystalline lens vault, crystalline lens thickness, angle opening distance (AOD500/AOD750), and the area described by the trabecular-iris space (TISA500/TISA750) at 500/750  μm. We also use eAS-OCT to image and quantify dynamic functional changes of the AS in response to a light stimulus that induces physiological pupillary changes as well as accommodative efforts that induce lens changes. The results show that the described eAS-OCT is able to provide full anatomical biometry for AS and is useful for the studies where the dynamic response of AS compartment to certain stimulus is required.

[1]  Michael Pircher,et al.  Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography. , 2009, Journal of biomedical optics.

[2]  Anthony Kuo,et al.  Simultaneous swept source optical coherence tomography of the anterior segment and retina using coherence revival. , 2012, Optics letters.

[3]  J. Izatt,et al.  Anterior Chamber Width Measurement by Optical Coherence Tomography , 2003 .

[4]  P. Keane,et al.  Clinical applications of long-wavelength (1,000-nm) optical coherence tomography. , 2011, Ophthalmic surgery, lasers & imaging : the official journal of the International Society for Imaging in the Eye.

[5]  Iwona Gorczynska,et al.  Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera. , 2009, Optics express.

[6]  Carlo F. Lovisolo,et al.  Phakic intraocular lenses. , 2005, Survey of ophthalmology.

[7]  Fabrice Manns,et al.  Imaging and full-length biometry of the eye during accommodation using spectral domain OCT with an optical switch , 2012, Biomedical optics express.

[8]  Susana Marcos,et al.  Full OCT anterior segment biometry: an application in cataract surgery , 2013, Biomedical optics express.

[9]  Chen D. Lu,et al.  Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers , 2012, Biomedical optics express.

[10]  T. Berendschot,et al.  Value of preoperative phakic intraocular lens simulation using optical coherence tomography , 2009, Journal of cataract and refractive surgery.

[11]  T. Aung,et al.  Imaging of the iridocorneal angle with the RTVue spectral domain optical coherence tomography. , 2012, Investigative ophthalmology & visual science.

[12]  D. Friedman,et al.  Lens vault, thickness, and position in Chinese subjects with angle closure. , 2011, Ophthalmology.

[13]  Doug Malchow,et al.  Extended imaging depth to 12 mm for 1050-nm spectral domain optical coherence tomography for imaging the whole anterior segment of the human eye at 120-kHz A-scan rate , 2013, Journal of biomedical optics.

[14]  Ruikang K. Wang,et al.  Fourier domain optical coherence tomography achieves full range complex imaging in vivo by introducing a carrier frequency during scanning , 2007, Physics in medicine and biology.

[15]  J. Izatt,et al.  Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat's principle. , 2002, Optics express.

[16]  Haotian Lin,et al.  Anterior segment variations with age and accommodation demonstrated by slit-lamp-adapted optical coherence tomography. , 2010, Ophthalmology (Rochester, Minn.).

[17]  Yoshiaki Yasuno,et al.  Anterior ocular biometry using 3-dimensional optical coherence tomography. , 2009, Ophthalmology.

[18]  D. Friedman,et al.  Detection of primary angle closure using anterior segment optical coherence tomography in Asian eyes. , 2007, Ophthalmology.

[19]  Ruikang K. Wang In vivo full range complex Fourier domain optical coherence tomography , 2007 .

[20]  J. H. Sun,et al.  Factors associated with anterior chamber narrowing with age: an optical coherence tomography study. , 2012, Investigative ophthalmology & visual science.

[21]  R. Ritch,et al.  Ultrasound biomicroscopy in pigment dispersion syndrome. , 1994, Ophthalmology.

[22]  Ruikang K. Wang,et al.  Use of a scanner to modulate spatial interferograms for in vivo full-range Fourier-domain optical coherence tomography. , 2007, Optics letters.

[23]  M. Wojtkowski,et al.  Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range. , 2009, Optics express.

[24]  Marinko V Sarunic,et al.  Imaging the ocular anterior segment with real-time, full-range Fourier-domain optical coherence tomography. , 2008, Archives of ophthalmology.

[25]  Jay Wei,et al.  Anterior chamber optical coherence tomography study of human natural accommodation in a 19-year-old albino. , 2004, Journal of cataract and refractive surgery.

[26]  D. Friedman,et al.  Analysis of anterior segment dynamics using anterior segment optical coherence tomography before and after laser peripheral iridotomy. , 2013, JAMA ophthalmology.

[27]  G. Ripandelli,et al.  Optical coherence tomography. , 1998, Seminars in ophthalmology.

[28]  J. Izatt,et al.  Real-time optical coherence tomography of the anterior segment at 1310 nm. , 2001, Archives of ophthalmology.

[29]  J. Izatt,et al.  3D refraction correction and extraction of clinical parameters from spectral domain optical coherence tomography of the cornea. , 2010, Optics express.

[30]  D. Friedman,et al.  Quantitative iris parameters and association with narrow angles. , 2010, Ophthalmology.

[31]  Carroll A.B. Webers,et al.  Value of optical coherence tomography for anterior segment surgery , 2010, Journal of cataract and refractive surgery.

[32]  S. Salim,et al.  The Role of Anterior Segment Optical Coherence Tomography in Glaucoma , 2012, Journal of ophthalmology.

[33]  G. Marchini,et al.  Ultrasound biomicroscopic and conventional ultrasonographic study of ocular dimensions in primary angle-closure glaucoma. , 1998, Ophthalmology.

[34]  Tin Aung,et al.  Reproducibility of anterior chamber angle measurements obtained with anterior segment optical coherence tomography. , 2007, Investigative ophthalmology & visual science.

[35]  Karla Zadnik,et al.  Lens thickness with age and accommodation by optical coherence tomography , 2008, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[36]  Yan Li,et al.  Corneal pachymetry mapping with high-speed optical coherence tomography. , 2006, Ophthalmology.

[37]  J. Duker,et al.  Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second. , 2010, Optics express.

[38]  Tin Aung,et al.  Angle closure glaucoma: a mechanistic review , 2011, Current opinion in ophthalmology.

[39]  Yudong Zhang,et al.  Measurement of ocular anterior segment dimension and wavefront aberration simultaneously during accommodation , 2012, Journal of biomedical optics.

[40]  Marinko Sarunic,et al.  Detailed visualization of the anterior segment using fourier-domain optical coherence tomography. , 2008, Archives of ophthalmology.

[41]  M. He,et al.  Comparison of lens thickness measurements using the anterior segment optical coherence tomography and A-scan ultrasonography. , 2009, Investigative ophthalmology & visual science.

[42]  Yan Li,et al.  A longitudinal study of LASIK flap and stromal thickness with high-speed optical coherence tomography. , 2007, Ophthalmology.

[43]  Jay Wei,et al.  Contact between 3 phakic intraocular lens models and the crystalline lens: An anterior chamber optical coherence tomography study , 2004, Journal of cataract and refractive surgery.

[44]  Jay Wei,et al.  Static and dynamic analysis of the anterior segment with optical coherence tomography , 2004, Journal of cataract and refractive surgery.

[45]  Georges Baikoff,et al.  Measurement of the internal diameter and depth of the anterior chamber: IOLMaster versus anterior chamber optical coherence tomographer , 2005, Journal of cataract and refractive surgery.

[46]  M. Moshirfar,et al.  Phakic intraocular lenses , 2008, Current opinion in ophthalmology.

[47]  M. Bechmann,et al.  Imaging of posterior chamber phakic intraocular lens by optical coherence tomography. , 2002, Journal of cataract and refractive surgery.

[48]  D. Friedman,et al.  In vivo analysis of vectors involved in pupil constriction in Chinese subjects with angle closure. , 2012, Investigative Ophthalmology and Visual Science.

[49]  K. Ohbayashi,et al.  Full-range imaging of eye accommodation by high-speed long-depth range optical frequency domain imaging , 2010, Biomedical optics express.

[50]  D. Adler,et al.  Extended coherence length megahertz FDML and its application for anterior segment imaging , 2012, Biomedical optics express.

[51]  Jing Liu,et al.  Anterior chamber angle measurement with anterior segment optical coherence tomography: a comparison between slit lamp OCT and Visante OCT. , 2008, Investigative ophthalmology & visual science.

[52]  Roger Hitchings,et al.  Quantitative evaluation of anterior chamber parameters using anterior segment optical coherence tomography in primary angle closure mechanisms , 2012, Clinical & experimental ophthalmology.

[53]  Ming Li,et al.  Anterior segment biometry during accommodation imaged with ultralong scan depth optical coherence tomography. , 2012, Ophthalmology.

[54]  F. Foster,et al.  Ultrasound biomicroscopy of anterior segment structures in normal and glaucomatous eyes. , 1992, American journal of ophthalmology.

[55]  Mingguang He,et al.  Iris Cross-sectional Area Decreases With Pupil Dilation and its Dynamic Behavior is a Risk Factor in Angle Closure , 2009, Journal of glaucoma.

[56]  Joseph A Izatt,et al.  Comparison of optical coherence tomography and ultrasound biomicroscopy for detection of narrow anterior chamber angles. , 2005, Archives of ophthalmology.

[57]  C. Rapuano Evaluation of Verisyse and Artiflex phakic intraocular lenses during accommodation using Visante optical coherence tomography , 2008 .

[58]  E A Swanson,et al.  Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography. , 1994, Archives of ophthalmology.