Quantum Bayesianism as the basis of general theory of decision-making

We discuss the subjective probability interpretation of the quantum-like approach to decision making and more generally to cognition. Our aim is to adopt the subjective probability interpretation of quantum mechanics, quantum Bayesianism (QBism), to serve quantum-like modelling and applications of quantum probability outside of physics. We analyse the classical and quantum probabilistic schemes of probability update, learning and decision-making and emphasize the role of Jeffrey conditioning and its quantum generalizations. Classically, this type of conditioning and corresponding probability update is based on the formula of total probability—one the basic laws of classical probability theory.

[1]  Andrei Khrennikov Quantum-like formalism for cognitive measurements. , 2003, Bio Systems.

[2]  Jennifer S Trueblood,et al.  A quantum theoretical explanation for probability judgment errors. , 2011, Psychological review.

[3]  Fabio Bagarello,et al.  Quantum Dynamics for Classical Systems: With Applications of the Number Operator , 2012 .

[4]  Richard C. Jeffrey,et al.  Alias Smith and Jones: The testimony of the senses , 1987 .

[5]  A. Tversky,et al.  The Disjunction Effect in Choice under Uncertainty , 1992 .

[6]  James T. Townsend,et al.  Quantum dynamics of human decision-making , 2006 .

[7]  G. D’Ariano,et al.  Probabilistic theories with purification , 2009, 0908.1583.

[8]  Yoshiharu Tanaka,et al.  Quantum-like generalization of the Bayesian updating scheme for objective and subjective mental uncertainties , 2012 .

[9]  D. Hofstadter Metamagical Themas: Questing for the Essence of Mind and Pattern , 1985 .

[10]  J. Busemeyer,et al.  Quantum cognition: a new theoretical approach to psychology , 2015, Trends in Cognitive Sciences.

[11]  Jerome R Busemeyer,et al.  Can quantum probability provide a new direction for cognitive modeling? , 2013, The Behavioral and brain sciences.

[12]  Emmanuel M. Pothos,et al.  decision theory A quantum probability explanation for violations of ' rational ' Supplementary data tml , 2009 .

[13]  C. Fuchs,et al.  Quantum probabilities as Bayesian probabilities , 2001, quant-ph/0106133.

[14]  N. Mermin,et al.  Why QBism Is Not the Copenhagen Interpretation and What John Bell Might Have Thought of It , 2014, 1409.2454.

[15]  Andrei Khrennikov Quantum theory: Reconsideration of foundations , 2003 .

[16]  F. Ramsey Truth and Probability , 2016 .

[17]  Ehtibar N. Dzhafarov,et al.  Quantum Models for Psychological Measurements: An Unsolved Problem , 2014, PloS one.

[18]  Ehtibar N. Dzhafarov,et al.  On Selective Influences, Marginal Selectivity, and Bell/CHSH Inequalities , 2012, Top. Cogn. Sci..

[19]  Yoshiharu Tanaka,et al.  Quantum Information Biology: From Information Interpretation of Quantum Mechanics to Applications in Molecular Biology and Cognitive Psychology , 2015, Foundations of Physics.

[20]  C. Fuchs,et al.  A Quantum-Bayesian Route to Quantum-State Space , 2009, 0912.4252.

[21]  Andrei Khrennikov Classical and quantum mechanics on information spaces with applications to cognitive, psychological, social and anomalous phenomena , 2000 .

[22]  Arkady Plotnitsky,et al.  Epistemology and Probability: Bohr, Heisenberg, Schrödinger, and the Nature of Quantum-Theoretical Thinking , 2009 .

[23]  A. Wald,et al.  Probability, statistics and truth , 1939 .

[24]  A. Khrennikov,et al.  Quantum Social Science , 2013 .

[25]  R. Jeffrey Probability and the Art of Judgment , 1992 .

[26]  Giacomo Mauro D'Ariano Physics as Information Processing , 2010 .

[27]  Andrei Khrennikov,et al.  Ubiquitous Quantum Structure , 2010 .

[28]  Marco Zaopo Informational Axioms for Quantum Theory , 2012 .

[29]  Giacomo Mauro D'Ariano,et al.  Operational Axioms for Quantum Mechanics , 2006, quant-ph/0611094.

[30]  Arkady Plotnitsky Niels Bohr and Complementarity , 2012 .

[31]  Arkady Plotnitsky,et al.  Reading Bohr: Physics and Philosophy , 2006 .

[32]  Andrei Khrennikov,et al.  Ubiquitous Quantum Structure: From Psychology to Finance , 2010 .

[33]  Andrei Khrennikov,et al.  Vaxjo Interpretation of Quantum Mechanics , 2002 .

[34]  Ruediger Schack,et al.  QBism and the Greeks: why a quantum state does not represent an element of physical reality , 2014, 1412.4211.

[35]  J. Busemeyer,et al.  Applying quantum principles to psychology , 2014, 1405.6427.

[36]  A. Tversky,et al.  Thinking through uncertainty: Nonconsequential reasoning and choice , 1992, Cognitive Psychology.

[37]  Ruediger Schack,et al.  Quantum-Bayesian Coherence , 2009, 1301.3274.

[38]  Andrei Khrennikov,et al.  On Quantum-Like Probabilistic Structure of Mental Information , 2004, Open Syst. Inf. Dyn..

[39]  Carlton M. Caves,et al.  Subjective probability and quantum certainty , 2006 .

[40]  Giulio Chiribella,et al.  Informational axioms for quantum theory , 2012 .

[41]  Polina Khrennikova Evolution of quantum-like modeling in decision making processes , 2012 .

[42]  H T Waaler,et al.  Bayes' Theorem , 2017, Encyclopedia of Machine Learning and Data Mining.

[43]  J. Schreiber Foundations Of Statistics , 2016 .

[44]  Louis Marchildon,et al.  Why I am not a QBist , 2014, 1403.1146.

[45]  Yoshiharu Tanaka,et al.  Violation of contextual generalization of the Leggett–Garg inequality for recognition of ambiguous figures , 2014, 1401.2897.

[46]  Yoshiharu Tanaka,et al.  Quantum-like dynamics of decision-making , 2012 .

[47]  Croson,et al.  The Disjunction Effect and Reason-Based Choice in Games. , 1999, Organizational behavior and human decision processes.

[48]  Patrick Suppes,et al.  Quantum mechanics, interference, and the brain , 2009 .

[49]  Christopher A. Fuchs,et al.  Symmetric Informationally-Complete Quantum States as Analogues to Orthonormal Bases and Minimum-Uncertainty States , 2007, Entropy.

[50]  Joseph P. Zbilut,et al.  A Preliminary Experimental Verification On the Possibility of Bell Inequality Violation in Mental States , 2008 .

[51]  N. David Mermin,et al.  An introduction to QBism with an application to the locality of quantum mechanics , 2013, 1311.5253.

[52]  Jerome R. Busemeyer,et al.  Quantum Models of Cognition and Decision , 2012 .

[53]  Andrei Khrennikov,et al.  Contextual Approach to Quantum Formalism , 2009 .

[54]  Masanori Ohya,et al.  Quantum-like model for the adaptive dynamics of the genetic regulation of E. coli’s metabolism of glucose/lactose , 2012, Systems and Synthetic Biology.

[55]  Arkady Plotnitsky,et al.  Are quantum-mechanical-like models possible, or necessary, outside quantum physics? , 2014 .

[56]  Andrei Khrennikov Linear representations of probabilistic transformations induced by context transitions , 2001 .

[57]  Yoshiharu Tanaka,et al.  Quantum Adaptivity in Biology: From Genetics to Cognition , 2015, Springer Netherlands.

[58]  Andrei Khrennivov,et al.  Classical and Quantum Mechanics on Information Spaces with Applications to Cognitive, Psychological, Social, and Anomalous Phenomena , 1999, quant-ph/0003016.

[59]  Emmanuel Haven,et al.  An Application of the Theory of Open Quantum Systems to Model the Dynamics of Party Governance in the US Political System , 2014 .

[60]  J. Acacio de Barros,et al.  Joint probabilities and quantum cognition , 2012, 1206.6706.

[61]  M. Katsnelson,et al.  Quantum theory as the most robust description of reproducible experiments: application to a rigid linear rotator , 2013, Optics & Photonics - Optical Engineering + Applications.

[62]  Ehtibar N. Dzhafarov,et al.  All-Possible-Couplings Approach to Measuring Probabilistic Context , 2012, PloS one.

[63]  Irina Basieva,et al.  Quantum-Like Representation Algorithm for Trichotomous Observables , 2011 .